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Preface

0.1 Hilbertian Fields

In 1892, D. Hilbert obtained the following basic result, which along with
certain generalizations is nowadays called Hilbert’s irreducibility theorem.

Theorem 0.1.1 ([30]). Let f(X,t) € Q[X,t] be an irreducible polynomial.
Then f(X,to) is irreducible for infinitely many integers ty € Z.

Hilbert’s original proof has been simplified subsequently, see for instance
[71, 1.1] for a modern version based on a later proof by Dérge. There are
also more algebraic proofs by Eichler and Fried, based on reduction of the
polynomial modulo various primes, see [15], [20, Section 3]. However, also
these proofs rely on analytic techniques, as they use Chebotarév’s density
theorem or the Weil bounds for the number of points on curves over finite
fields. To my knowledge, no purely algebraic proof of Hilbert’s irreducibility
theorem is known to date.

There are well-known extensions of Hilbert’s irreducibility theorem, for
instance the variables X and ¢ can be replaced by tuples of variables X;
and t;, where we specialize the ¢;. Additionally, one can consider finite
sets of polynomials, and require that they are simultaneously irreducible for
infinitely many specializations of the ¢;. Also, one can replace Q by a field
finitely generated over Q. These extensions involve only minor new ideas, so
the basic version of interest is as stated above.

Hilbert’s irreducibility theorem has many important applications in arith-
metic geometry and number theory. For instance, if L is a regular finite Galois
extension of the rational field Q(¢) (i. e., Q is algebraically closed in L) with
group G # 1, then there are infinitely many mutually non-isomorphic Galois
extensions of Q with group G. Similarly as in the inverse problem of Galois
theory, one frequently uses geometric constructions to obtain certain objects
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of interest over rational function fields, and afterwards specializes the pa-
rameters using Hilbert’s irreducibility theorem to get these objects over the
rationals — preserving certain properties. An example is the construction of
elliptic curves of high rank.

There are other fields £ besides those which are finitely generated over Q
for which the statement of Hilbert’s irreducibility theorem (with Z replaced
by k) holds, see [24], [44].

0.2 Hilbert Sets over Number Fields

In the following let & be a number field, and Oy its ring of integers. In [66]
Siegel proved the fundamental result that an irreducible algebraic curve over
k of positive genus has only finitely many points with coordinates in O. He
also gave a description of the genus 0 curves which do have infinitely many
integral points.

In that work, he already remarked the applicability of this result to
Hilbert’s irreducibility theorem, indeed one can get the result in a few lines.

If one wants to prove Hilbert’s irreducibility theorem only in the form as
stated above, then it is however vast overkill to use Siegel’s theorem, because
the latter is by far deeper and more difficult to prove, see [44], [60]. The
latter reference uses a fair amount of nonstandard arguments.

Hilbert’s original analytic argument is not suited to give very precise
versions of his theorem. The best versions known to date use Siegel’s theorem
(applied to polynomials associated to, but different from f(X,¢)). For f as
in the theorem, let R; be the set of those integers ¢, such that f(X, o) is
reducible over Q. Then one of the tighter versions asserts that |R sN[—n, n]| <
en'/? for a constant ¢, and if we put no restriction on f, then this result is
optimal in view of the example f(X,t) = X2 — .

A recent development is the explicit construction of universal Hilbert sets
‘H (over the rationals). An infinite set H C Z is called a universal Hilbert set
if for any irreducible f(X,t) € Q[X,t], there are only finitely many t, € H
with f(X,ty) reducible. The existence of universal Hilbert sets is easy to
show, one uses a set—theoretic diagonal argument and Hilbert’s irreducibility
theorem for finite families of polynomials (see eg. [24, Chap. 14, Exercise
2]). It is considerably more difficult to construct explicit examples. The first
explicit universal Hilbert set had been given by Sprindzuk [67] in 1981 — it
looks as ugly as {[exp v/loglogm| + m!2m2\ m = 3,4,...}. Later, simpler
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series were found, like {2™ + m| m = 1,2,...} by Débes and Zannier in
[13]. The present trend is to find or prove the existence of universal Hilbert
sets with good density properties — a recent result is that such sets with
asymptotic density 1 do exist. However, no explicit universal Hilbert set of
density 1 is known so far. See [2], [13], [74], and the references given there
for questions of this kind.

0.3 Finiteness Results

Here we want to follow a different direction. Obviously, a universal Hilbert
set cannot be cofinite in Z. However, it turns out that the sets R are finite
quite often. A trivial instance for Ry being infinite is if the polynomial
f(X,t) has a linear factor for infinitely many specializations t — t; € Z.
But then (by Siegel’s theorem), the curve given by f(X,¢) = 0 has genus 0.
(By the genus of f(X,t) = 0 we mean the genus of the field C(t, z), where
x is a root of f(X,t). This is well-defined even if f(X,t) is not absolutely
irreducible).

So it seems to be natural to ask for irreducible polynomials f(X,t) €
Q[X, t], such that the curve given by f(X,t) = 0 has positive genus, but
where f(X,to) is nevertheless reducible for infinitely many ¢y € Z.

It is very easy to write down such polynomials for each degree n > 1
which is not a prime, see Example 5.2.2. Surprisingly however, for prime
degrees, no such polynomials exist. This was shown in [57], as a precursor of
the present work, and is restated in (a) in the theorem below.

In the proof of that fact, we were not able to work in a purely number
theoretic context, just using the assumption that deg (f) is a prime. Even
though the proofis elementary, we used quite a few group theoretic arguments
and results. In turns out that much of the finiteness question is encoded in
the Galois group of f(X,t) over Q(¢). For instance, if this group is the
alternating or symmetric group in the natural action on the roots of f(X,1),
then the finiteness statement holds again, see (b) of the theorem below. This
result, which is easier to obtain than (a), is already contained in [57], too.

The present work is an attempt to connect the validity of a finiteness
statement to the Galois group of f(X,t). For this we have to invoke much
more group theory, arithmetic arguments, and also some explicit computa-
tions at several points. In particular, we make frequent use of the classifica-
tion of the finite simple groups, which is not the case in proving (a) and (b).

vii



PREFACE

We doubt that this can be avoided in order to prove for instance (¢) and (d)
or Theorem 0.3.2 below.

For simplicity we state a sample result here, see Chapter 5 for more
and stronger finiteness results and cases where this fails, and analogues for
number fields.

Theorem 0.3.1. Let f(X,t) € Q[X,t| be irreducible, and let A be the Ga-
lois group of f(X,t) over Q(t) in its natural action on the roots of f(X,t).
Suppose that f(X,t) =0 has positive genus. Then f(X, 1) is irreducible for
all but finitely many integers to € Z, if one of the following conditions is

fulfilled.
(a) degx (f) is a prime.
(b) A is the alternating or symmetric group in its natural action.
(c) A is a simple group not isomorphic to an alternating group A,.

(d) A acts primitively, and has a non—abelian composition factor which is
not isomorphic to A; (j > 5), PSLy(7), or PSLy(8).

Part (d) is a strong assertion in the sense that it requires only one of the
composition factors of A to be not contained in a very small list. In Example
5.2.8 we show how primitive groups with non—abelian composition factors
only among A; (j > 5), PSLy(7), or PSLy(8) give rise to counter examples.
In Remark 5.2.3 we explain why primitivity of A is a reasonable assumption
to make.

In (c) and (d) we excluded the infinite series of alternating groups, even
though they are no problem in the natural action by part (b). In Example
5.2.7 we give a result showing that we indeed need to exclude alternating
groups.

From part (c) of the above theorem (and a little extra argument), we
obtain the following result about the preservation of Galois groups.

Theorem 0.3.2. Let f(X,t) € Q[X,t] be irreducible of degree > 3 with
Galois group G, where G is a simple group not isomorphic to an alternating
group. Then Gal(f(X,t0)/Q) = G for all but finitely many specializations
to € 7.

Theorem 0.3.2 becomes false if we consider rational specializations ¢y € Q
rather than integral specializations, see Example 5.2.1.

viii
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There are other results about the rareness of exceptional specializations
for very specific polynomials. M. Fried investigates polynomials of the form
h(X) — t, where h(X) € Z[X] is functionally indecomposable, and proves in
[22] that unless deg(h) = 5, then h(X) — 1 is reducible for ¢, € Z only if ¢, is
in the value set of h or in a certain finite set. This analysis can be extended
to polynomials of the form h(X) —tX?, where i is relatively prime to deg(h).
See [22] for the case i # 1,deg(h) — 1, and [55] for the more difficult cases
i =1 or deg(h) — 1.

Fried’s observation of the applicability of group theoretic methods in the
analysis of Hilbert sets inspired this work, where we try to give a reasonably
complete investigation of the question when an integral Hilbert set is cofinite
in Z or not.

Using quite different methods, K. Langmann shows cofiniteness of inte-
gral Hilbert sets (under certain assumptions) for so-called Thue-polynomials,
which are polynomials of the form H(X,t) — 1, where H(X,t) € Q[X,¢] is
homogeneous. He also obtains other arithmetic results about integral Hilbert
sets. See [45], [46] and his other work quoted there. In the final section of this
paper we show how our setup yields various generalizations of Langmann’s
result about the Thue-polynomial. For this part we hardly use any group
theory. In particular, we do not need the difficult Chapters 2 and 3 for this.

0.4 Overview of the Proofs

The main part of the proofs is group—theoretic. We give a rough picture of
the proof of Theorem 0.3.1 and its number theoretic analogue. For this let
Oy be the ring of integers of a number field k. If ¢ is a transcendental, and
9(Z) € k(Z) is a non—constant rational function, then terms like splitting
field and Galois group of g(Z) — t refer to the corresponding terms of an
irreducible numerator of g(Z7) — t.

Suppose that the irreducible polynomial f(X,¢) € k[X,t] has infinitely
many specializations ty € O with f(X,ty) reducible. Using a well-known
reduction argument, which basically goes back to Hilbert, and Siegel’s theo-
rem, we get rational functions g(Z) € k(Z), such that f(X, g(Z)) is reducible
over k(Z), and |g(k)NOk| = oo. The last property gives, by another theorem
of Siegel, that |g~!(c0)| < 2. This implies that the Galois group of ¢g(Z) — ¢
over k(t) contains an element with at most two cycles. Also, we relate this
Galois group to the Galois group of f(X,t) over k(?).

X
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Thus we need a good knowledge of permutation groups which contain an
element with at most two cycles. In this generality, a classification is hopeless.
However, we obtain a complete classification if we assume that the group is
primitive. (This reduction to primitive groups corresponds to writing g(~%)
as a composition of functionally indecomposable rational functions.) The
classification of these groups is achieved in Chapter 2 and comprises the
most technical part of this work. If we had only the proof of the stated
theorems in mind, we could somewhat simplify the arguments by employing
other properties of the Galois group of g(Z) — t, like the existence of genus
0 systems (see Chapter 3). However, we believe that the classification of
primitive groups with a two—cycle element is of independent interest, so we
classify them under no further restrictions. The classification result is in
Theorem 2.3.3, page 11.

The proof makes use of a rough distinction of the primitive permutation
groups into five classes, given by the Aschbacher—O’Nan—Scott Theorem.
Each case requires quite different techniques and kinds of arguments. Only
in three of the five cases there are actually examples, namely for the groups
in affine, product, or almost simple action. We make heavy use of the clas-
sification of the finite simple groups throughout the proof.

In the next stage we classify the possibilities that a two—cycle element
of a primitive group is part of a genus 0 system of a normal subgroup of
this group. This condition comes from the Riemann-Hurwitz genus formula
and the interpretation of g(Z) as a covering map between Riemann spheres,
sending z to g(z). See Chapter 3.

If we allow k£ to be an arbitrary number field, then we are basically finished
at this point.

Thus assume that £ = Q. The main conditions used so far came from
geometric considerations, that is by seeing ¢g(Z) over the complex numbers
C. Now we are concerned with the question which of the group-theoretic
possibilities indeed come from rational functions g(Z) € Q(Z) with the cor-
rect arithmetic properties. The proof of actual existence in certain cases
uses techniques from the inverse Galois problem (mainly rational rigidity)
or explicit computations in a few cases. In most cases where examples do
not exist, we rule them out by considering the interplay between inertia and
decomposition groups. Again, we will also require some explicit computa-
tions to rule out certain candidates. This is the subject of Chapter 4 for the
theoretical arguments, and Section 4.4 for the computations.

Chapter 5 eventually states and proves our main results and gives exam-
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ples to show that our finiteness results are optimal in a certain sense.

I thank the DFG who supported this work through a Habilitandenstipen-
dium.
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Chapter 1

Galois Theoretic Preparation

1.1 Description of Hilbert Sets

In this section £ will denote a number field, and Oy its ring of integers.
The following proposition follows from a variation of the classical reduction
argument in the proof of Hilbert’s irreducibility theorem (see e.g. [44, Chapter
9]), combined with Siegel’ theorem about integral points on algebraic curves.
As this proposition is the key for the Galois theoretic investigation of Hilbert
sets, we supply a proof. An alternative argument, which also relies on a
reduction to Siegel’s Theorem, has been given by Fried, see [20].

Proposition 1.1.1. Let f(X,t) € k(t)[X] be an irreducible polynomial of
positive degree n in X. Let m € {1,2,...,n — 1}. Set R, := {to €
Orlf(X,ty) is defined and has a factor of degree m over k}. Then there are
finitely many non—constant rational functions g;(Z) € k(Z) and a finite set
W C O, such that

R, CWU U(gz(k) N O)

and f(X, g:(Z)) is reducible over k(Z) with a factor of degree m.

Proof. By replacing X and f(X,t) by multiples with elements in k(t), we
may assume that f(X,t) € Ok[t, X] is monic in X. Let z1,z,,...,x, be the
roots of f(X,t) in an algebraic closure of k(t). Let I C {1,2,...,n} with
1 <|I| <n-—1,and set
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Let K; be the field generated by k(t) and the coefficients of f;. As f is
irreducible, at least one of these coefficients is not in k(t), so [K7 : k(t)] > 2.
Let B € Olt][x1,z2,...,2,] be a primitive element of K/k(t), and let
Pr(Y,t) € Ok[t,Y] be the minimal polynomial of 8; over k(t). By definition
of K, we get that 31 = >, «;(t)A;, where o;(t) € k(t) and A; is a product
of coefficients of f;. Denote by S the union of the k-rational roots of the
denominators of all these rational functions «;, taken for all such index sets
I. Denote by k[t]s the ring of rational functions in k(¢) whose denominators
have no roots in S.

Now take ty € R,, such that f(X,ty) is separable of degree n and
to ¢ S — this assumption excludes only finitely many elements from R,,.
Write f(X,to) = f1(X)fo(X) with fi, fo € Ok[X] and deg(f1) = m. As
(k[t]s)[x1, x2, - - ., x,] is integral over k[t]g, the specialization map ¢ +— t, from
k[t]s to k extends to a k—algebra homomorphism w : (k[t]s)[z1, Z2, ..., 2y —
k[Z1,Za, ..., T,|, where the &; are the roots of f(X,ty). Label these roots
such that w(z;) = ;. Let I be the set of 7 such that £; is a root of f;.
Denote by w(fr) the polynomial f; with w applied to its coefficients. Then
w(fr) = f1 and Pr(w(fr),ts) = 0. But, by the construction above, g is a
polynomial over k[t]s in the coefficients of f;, hence w(f;) € k, and then
w(Br) € O because w(fr) fulfills an integral equation over Q. Thus each
such tq gives rise to an integral point (w(8r),ty) on Py for some index set I.

Now fix an I which appears infinitely many times. Thus the curve
P;(Y,t) = 0 has infinitely many points in Oy x Of. Siegel’s Theorem
[66] implies that this curve admits a rational parametrization ¥ = r(Z2),
t = g(Z) with r, g € k(Z), such that all but finitely many k-rational points
on P;(Y,t) = 0 are of the form (r(zp), g(20)) for some z, € k.

Next we show that f(X,g(Z)) is reducible over k(Z) with a factor of
degree m. Let z be a root of g(Z) — t, so z is transcendental over k with
g(z) = t. By the previous paragraph, P(r(z),t) = 0 = P;(8r,t). Thus
r(z) is conjugate to [y over k(). But the algebraic conjugates of z over k(t)
are precisely the roots of g(Z) — t, so we may assume that r(z) = ;. But
f1(X) € k(t, Br)[X] = k(2)[X], and the claim follows. O

The following consequence is from [57] (see also [20] for a similar version),
for the sake of completeness we supply the easy proof.

Proposition 1.1.2. Let f(X,t) € k(t)[X] be an irreducible polynomial of

2
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positive degree in X . Set
R = {to € Or|f(X,ty) is defined and reducible over k}.

Then there are finitely many rational functions g;(Z) € k(Z) and a finite set
W C O, such that the following holds.

(¢) R €W UU;(g:(k) N O)-
(b) 1gi(k) N O] = oco.
(c) f(X,9:(Z2)) is reducible over k(Z).

(d) If g:(Z) = a(b(Z)) with a,b € k(Z) and deg(b) > 1, then f(X,q(Z))
is irreducible over k(b(Z)).

Proof. By Proposition 1.1.1, there is a finite set of rational functions g;(Z) €
k(Z) such that (a) and (c) hold. Subject to these two conditions, assume
that among the possible choices of the g; the sum > deg(g;) is minimal. Let
g be one of the g;.

Of course |g(k) N Ok| = oo, for otherwise we could drop g and enlarge
W by a finite set. Next suppose that ¢(Z) = a(b(Z)) with a,b € k(Z),
deg(b) > 1, and f(X,9(Z)) = f(X,a(b(Z))) is reducible over k(b(Z)). Upon
replacing b(Z) by the variable Y, this means that f(X,a(Y)) is reducible
over k(Y). In particular, f(X,u) is reducible for each uy € a(k) N O, so
a(k)NO, C R. Clearly g(k)NOy C a(kU{oc})NO; = (a(k)U{a(c0)}) NO.
So we could replace g by a and enlarge W by a(oco) (if this element is in Oy),
contrary to our minimality assumption. O

1.2 Group Theoretic Consequences

Proposition 1.1.2 has the following important Galois theoretic translation.
Similar considerations appear already in [20], [22], [55], and [57]. Again, for
the sake of completeness, we give the straightforward proof from [57].

Lemma 1.2.1. Let f(X,t) € k(t)[X] be an irreducible polynomial of positive
degree n, and let g(Z) € k(Z) be one of the rational functions g; as in
Proposition 1.1.2. Choose & and z in an algebraic closure of k(t) such that
flz,t) = g(2) =t = 0. Let L be a normal closure of k(x,z)/k(t), and A :=
Gal(L/k(t)). Let A, and A, be the stabilizers in A of x and z, respectively.
Furthermore, let B be a group with A, < B < A. Then the following holds.

3
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(a) A A G A

(b) BA, = A.

(¢c) A.,(A:NDB) S B.

(d) A acts faithfully on AJ/As, and B acts faithfully on B/(A; N B).

(e) If A acts primitively on AJ/A,, then A acts faithfully on AJA,.

(f) If B acts primitively on B/(A, N B), then B acts faithfully on B/A,.

Proof. By Liiroth’s Theorem, the fixed field in L of B has the form k(b(z))

for b(Z) € k(Z) of degree [B : A,] > 1. Also, k(t) C k(b(z)), so t = a(b(z))

for a(Z) € k(Z). Thus g(Z) = a(b(Z)), and the statements (a) and (b) are

the direct translations of the properties (c) and (d) from Proposition 1.1.2,

namely that f(X, g(z)) is reducible over k(z), but irreducible over k(b(z)).
(c) follows from (b), for if A,(A, N B) = B, then

A= BA, = A,(A, N B)A, = A, A,,

contrary to (a).

Let N, and N, be the kernel of the actions of A on A, and A,, respectively.
As L is the normal closure of k(z,z)/k(t), we have N, N N, = 1. Suppose
that N, # 1. Then N, is not a subgroup of N,, hence N, is also not a
subgroup of A,, because N, is the intersection of the conjugates of A,. Thus
A, < A,N, < A. Set B := A,N,. So A= BA; by (b). However, (a) gives
the contradiction

A= BA, = (AN) Ay = A, (N;A,) = A,A, G A

This establishes the first part of (d). As BA, = A by (b), the action of B on
B/(A, N B) is a subgroup of the action of A on A/A,. As the latter action
is faithful by what we have seen already, the former one is faithful as well.

Next suppose that A does not act faithfully on A/A,, hence N, # 1.
Similarly as before, we obtain A,N, > A,. On the other hand, because
AN A, = A A, g A, the group A, N, is properly between A, and A. Thus
A is not primitive on A/A;. This gives (e).

We need to show (f). Let N < A, be the kernel of the action of B on
B/A,. Then N is not contained in A, N B by (d), but on the other hand
N(A,NB) is a proper subgroup of B by (c). This contradicts the maximality
of A,N B in B. O



1.3. NOT ABSOLUTELY IRREDUCIBLE POLYNOMIALS

1.3 Not Absolutely Irreducible Polynomials

In this section k£ may be any field of characteristic 0.

It is a well-known consequence from Bezout’s Theorem that if f(X,Y) €
k[X,Y] is irreducible, but not absolutely irreducible, then there are only
finitely many (a,b) € k? with f(a,b) = 0. Corollary 1.3.2 shows that under
certain additional assumptions an analogue of this observation holds in the
context of Hilbert sets.

Lemma 1.3.1. Let f(X,t) € k(t)[X] be an irreducible polynomial over k,
and suppose that f(X,to) is reducible for all ty in an infinite subset R of k.
Let ¢ be a Galois extension of k, and h(X,t) € £(t)[X] be an L—irreducible
factor of f(X,t). Then h(X,to) is reducible over £ for all but finitely many
ty € R.

Proof. Without loss assume that f(X,t) € k[t, X] is monic in X. Write
h(X,t) = ST hi(t) X", where hi(t) € £[t], and assume also (GauBl Lemma)
that h(X,t) is monic in X. Let ¢; < ¢ be the field generated by k and the
coefficients of the h;.

We claim that there is a cofinite set M in k, such that the coefficients
of h(X,ty) € £,[X] generate ¢; for each t, € M. Suppose that is not the
case. Then, by the pigeon hole principle, there is an infinite set M’ in k such
that the coefficients of the h(X, ;) generate a proper subfield ¢ of ¢; for all
to € M'. Thus for each t; € M', we have h;(ty) € {5 for all i. As this holds
for infinitely many ¢y € k C /5, this implies that the coefficients of the h; are
in /5, a contradiction.

Let M be as above. By removing finitely many elements from M, we may
assume that the Gal(¢/k)—conjugates of h(X,ty) are relatively prime for each
to € M. The product of the Gal(£/k)—conjugates of h(X,t) is f(X,t). This
implies that the product of the Gal(¢/k)-conjugates of h(X,ty) is f(X, o) for
each ty) € M. Now take ty € M such that h(X,tp) is irreducible over £. Then
h(X,ty) divides some irreducible factor f;(X) € k[X] of f(X, ), hence each
Galois conjugate of h(X,t,) divides fi, so also the product of these Galois
conjugates divides fi, hence f; = f(X,ty) by the previous consideration.
Thus ty € R, which proves the assertion. O

Corollary 1.3.2. Let f(X,t) € k(t)[X] be an irreducible polynomial over k,
denote by L its splitting field over k(t), and set A := Gal(L/k(t)). Assume
that f(X,to) is reducible over k for infinitely many to € k, and that one of
the following holds.
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(a) A is a simple group.
(b) A acts primitively on the roots of f(X,1).
Then f(X,t) is absolutely irreducible over k.

Proof. Let k = LNk, and G := Gal(L/k(t)). Suppose that f(X,t) is not
absolutely irreducible. Then G is an intransitive normal subgroup of A.
Hypothesis (a) as well as hypothesis (b) imply that G = 1. That means that
F(X,t) decomposes into linear factors over £ = k, contrary to the previous
lemma. O

Remark 1.3.3. The assertion of the corollary becomes false if we relax the
assumption on A. For instance, take f(X,t) = X* 4+ 2(1 — ) X% + (1 +¢)%.
Then f(X,t) is irreducible over Q(¢), but f(X,t) = (X% +2iz —1—1)(X? -
2iz — 1 — t), where i = —1. Furthermore, from f(X,u?) = (X? 4+ 2uX +
u? +1)(X? — 2uX +u? + 1) we see that f(X, 1) is reducible over Q for each
square ty € Z.



Chapter 2

Primitive Groups with a
two—cycles Element

2.1 Permutation Groups — Notations, Defini-
tions, and Elementary Results

Here we collect definitions and easy results connected to finite groups and
finite permutation groups, which are being used throughout the work. Note
that many notations and definitions which are only used locally, especially
those which are only used in proofs in rare cases, are defined where they first
appear. The index of symbols and notions may help finding quickly those
definitions.

General notation: For a,b elements of a group G set a® := b~'ab. Fur-
thermore, if A and B are subsets of G, then A°, a® and AP have their
obvious meaning. If H is a subgroup of GG, then for a subset S of
G let Cy(S) denote the centralizer of S in H and Ng(S) denote the
normalizer {h € H| S" = S} of Sin H.

If A, B,... is a collection of subsets or elements of (G, then we denote
by <A, B,...> the group generated by these sets and elements.

The order of an element g € G is denoted by ord(g).

Permutation groups: Let G be a permutation group on a finite set ).
Then || is the degree of G. We use the exponential notation w9 to
denote the image of w € () under g € GG. The stabilizer of w in G is

7
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denoted by G,,. If G is transitive and G|, is the identity subgroup, then
G is called regular.

The number of fixed points of g on 2 will be denoted by x(g).

Let G be transitive on €2 of degree > 2, and let G, be the stabilizer
of w € €. Then the number of orbits of G, on € is the rank of G.
In particular, the rank is always > 2, and exactly 2 if and only if the
group is doubly transitive. The subdegrees of G' are defined as the orbit
lengths of G, on €.

Let G be transitive on €2, and let A be a nontrivial subset of 2. Set
S = {AY g € G}. We say that A is a block of G if S is a partition
of Q2. If this is the case, then S is called a block system of G. A block
(or block system) is called trivial if |[A| =1 or A = Q. If each block
system of @ is trivial, then G is called primitive. Primitivity of G is
equivalent to maximality of G, in GG. Note that the orbits of a normal
subgroup N of G constitute a block system, thus a normal subgroup of
a primitive permutation group is either trivial or transitive.

Specific groups: We denote by C,, and D,, the cyclic and dihedral group of
order n and 2n, respectively. If not otherwise said, then C), and D,, are
regarded as permutation groups in their natural degree n action. The
alternating and symmetric group on n letters is denoted by A, and S,,,
respectively.

We write S(M) for the symmetric group on a set M.

Let m > 1 be an integer, and ¢ be a power of the prime p. Let F,
be the field with ¢ elements. We denote by GL,,(¢) (or sometimes
GL;,(FFy)) the general linear group of F*, and by SL;,(¢) the special
linear group. Regard these groups as acting on Fj*. The group I' :=
Gal(FF, /F,) acts componentwise on F*. This action of I' normalizes
the actions of GL,,(¢) and SL,,(q). We use the following symbols for
the corresponding semidirect products: I'L,,(q) = <GL,(¢),I'> =
GLn(q) * T, XL, (q) := <SLyu(q),I'> =XL(q) x .

Note that if ¢ = p¢, then we have the natural inclusion I'L,,(¢) <
GLe(p)-

Let G be a subgroup of I'L,,, (¢), and denote by N the action of F* on it-
self by translation. Then G normalizes the action of N. If G = GL,,(q),
SL..(¢), I'Ly.(q), or ¥L,,(g), then denote the semidirect product of G

8
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with N by AGL,,(q), ASL.,(q), ATL,,,(q), or AXL,,(q), respectively. A
group A with N < A < ATL,,(q) is called an affine permutation group.

Let G < T'Ly,(g) act naturally on V' := Fy*. We denote by P'(V) the
set of one—dimensional subspaces of V. As GG permutes the elements in
P!'(V), we get an (in general not faithful) action of G on P!(V). The
induced permutation group on P*(V) is named by prefixing a P in front
of the group name, so we get the groups PGL,,(q), PSL,,(¢q), PTL,,(q),
or PXL,,(q), respectively.

The group GL,,(¢) contains, up to conjugacy, a unique subgroup which
permutes regularly the non—zero vectors of F;*. This group, and also
its homomorphic image in PGL,,(q), is usually called Singer group.
Existence of this group follows from the regular representation of the
multiplicative group of Fym on Fym = ", uniqueness follows for exam-
ple from Schur’s Lemma and the Skolem—Noether Theorem.

For n € {11,12,22,23,24} we denote by M,, the five Mathieu groups
of degree n, and let Mg be a point stabilizer of My; in the transitive
action on 10 points.

2.2 The Aschbacher—O’Nan—Scott Theorem

The Aschbacher-O’Nan—-Scott Theorem makes a rough distinction between
several possible types of actions of a primitive permutation group. This
theorem had first been announced by O’Nan and Scott on the Santa Cruz
Conference on Finite groups in 1979, see [62]. In their statement a case was
missing, and the same omission appears in [4]. To our knowledge, the first
complete version is in [1]. A very concise and readable proof is given in [48],
see also [14].

Let A be a primitive permutation group of degree n on 2. Then one of
the following actions occurs:

Affine action. We can identify (2 with a vector space F", and F' < A <
AGL,,(p) is an affine group as described above.

Regular normal subgroup action. A has anon-abelian normal subgroup

which acts regularly on Q. (There are finer distinctions in this case,
see [48], but we don’t need that extra information.)

9
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Diagonal action. A has a unique minimal normal subgroup of the form
N = S1 xSy x---xS;, where the S; are pairwise isomorphic non—abelian
simple groups, and the point stabilizer N, is a diagonal subgroup of N.

Product action. We can write 2 = A x A--- x A with ¢ > 2 factors, and
A is a subgroup of the wreath product S(A)1S; = S(A)! x S; in the
natural product action on this cartesian product. In such a case, we
will say that A preserves a product structure.

Almost simple action. Thereis S < A < Aut(S) for a simple non—abelian
group S. In this case, S cannot act regularly.

2.3 Previous Results

The aim of this chapter is the classification of those primitive permutation
groups A of degree n which contain an element o with at most two cycles.
If o actually is an n—cycle, the result is a well-known consequence of the
classification of doubly transitive permutation groups.

Proposition 2.3.1 (Feit [17, 4.1]). Let A be a primitive permutation group
of degree n which contains an n—cycle. Then one of the following holds.

(a) A <AGL1(p), n=p a prime; or
(b) A=A, orS,; or

(c) PSLk(q) < A< PI'Lk(q), k > 2, q a prime power, A acting naturally on
the projective space with n = (¢* —1)/(q — 1) points; or

(d) n=11, A =PSLy(11) or Myy; or
(e) n = 23, A= M23.

If o has two cycles of coprime length, say k£ and [ = n—k with k£ <[, then
it follows immediately from Marggrafs theorem [73, Theorem 13.5], applied
to the subgroup generated by o, that A, < A unless k = 1. The critical
case thus is k = 1. We quote the classification result [55, 6.2].

Proposition 2.3.2. Let A be a primitive permutation group of degree n

which contains an element with exactly two cycles, of coprime lengths k < [.
Assume that A, £ A. Then k =1, and one of the following holds.

10
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(a) n is a prime power, A is affine; or

(b) n=p+1, PSLa(p) < A < PGLy(p), p > 5 a prime; or
(c) n=12, A= My or Myy; or

(d) n=24, A= My,.

In the remainder of this chapter, we deal with the case where k and [ are
not necessarily coprime. The assumptions in the Propositions 2.3.1 and 2.3.2
quickly give that A is doubly transitive (or A < AGL;(p), a trivial case) —
this is clear under existence of an (n—1)-cycle, and follows from Theorems of
Schur [73, 25.3] and Burnside [32, XII1.10.8] under the presence of an n—cycle.
So one basically has to check the list of doubly transitive groups.

In the general case however, A no longer need to be doubly transitive.
Excluding the case A < AGL;(p), we will obtain as a corollary of our classi-
fication that A has permutation rank < 3, though I do not see how to obtain
that directly. I know only two results in the literature where this has been
shown under certain restrictions. The first one is by Wielandt [73, Theorem
31.2], [72], under the assumption that k£ = [, and £ is a prime, and the other
one is by Scott, see the announcement of the never published proof in [63].
In Scott’s announcement, however, there are several specific assumptions on
A. First k = [, and A has to have a doubly transitive action of degree k, such
that the point—stabilizer in this action is intransitive in the original action,
but that the element with the two cycles of length £ in the original action is
a k—cycle in the degree k£ action.

The main result of this chapter is

Theorem 2.3.3. Let A be a primitive permutation group which contains an
element with exactly two cycles. Then one of the following holds.

(a) A is affine, with the possibilities given in Theorem 2.4.9, page 17; or

(b) A acts via product action, with the possibilities given in Theorem 2.5.5,
page 21; or

(c) A is almost simple, with the possible actions listed in Theorem 2.8.1,
page 24.

11
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2.4 Affine Action

Here and later we will need the following well-known

Lemma 2.4.1. Let K be a field of positive characteristic p, and o € GLy,(K)
of order p* > p. Then p*~! < m — 1. In particular, ord(c) < p(m — 1) if
m > 2.

Proof. 1 is the only eigenvalue of o, therefore o is conjugate to an upper
triangular matrix with 1’s on the diagonal. So o — 1 is nilpotent. Now
b—1

(0 —1)?"" =¢?"" —1+£0, thus p~' < m, and the claim follows. O
We note the easy consequence

Lemma 2.4.2. Let A be an affine permutation group of degree p™. Let A
contain an element of order p" for r € N. Then p" ' < m. In particular, if
r=m, then m < 2, and m =1 for p > 2.

Proof. Without loss A = AGL,,(p). We use the well-known embedding of A
in GL,,41(p): Let g € GL,,(p), v € N. Then define the action of gv € A on
the vector space N X I, via (W, Wy41)?" := (WG + W41V, Wny1) for w € N,

Wm+1 € Fp.
This way we obtain an element o of order p” in GL,,1(p). The claim
follows from Lemma 2.4.1. O

Lemma 2.4.3. Let H be a rank 3 permutation group with subdegrees 1 <
u < v. Suppose that H is imprimitive. Then 1 + u divides v.

Proof. Let A be a nontrivial block, and § € A. Let € # § be in A. Then
A contains the orbit €#5. Also, A does not meet a point from an Hs—orbit
different from {8} and €5, for then A were the full set H is acting on. Thus
A = {6} Uefls. But

e =|Al-1< (1+u+v)/2-1<v,

so the orbit €5 has length u, and 1 + u divides v because the orbit of size v
is a union of conjugates of A. O

We need to know the doubly transitive permutation subgroups of the
collineation group of a projective linear space.

12
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Proposition 2.4.4 (Cameron, Kantor [5, Theorem I]). Let m > 3, p
be a prime, and H < GL,(p) be acting doubly transitively on the lines of
. Then SLy(p) < H or H = A7 < SLy(2).

Also, the primitive rank 3 permutation subgroups of even order of the
collineation group of a projective linear space have been classified by Perin
in an unpublished thesis. We use a result of Cameron and Kantor which
extends this result. The odd order case is easily handled by a result of
Huppert.

Proposition 2.4.5. Let m > 3, p be a prime, and H < GL,,(p) be acting
primitively of rank 3 on the lines of F)'. Then Sp,(p) A H, orp =2, m =3,
H =TL(8), and the subdegrees are 1, 3, 3.

Proof. It H has even order see the remarks preceding [5, Prop. 8.5]. So as-
sume that H has odd order. Then H is solvable, so also H = I, H is solvable.
Furthermore, H is transitive on F*. These groups have been classified by
Huppert [32, XIL.7.3]. Either H < T'L;(p™), or p™ = 3% (The other ex-
ceptional cases in Huppert’s classification have m = 2.) Let us look at the
action of I'L;(p™) = Fy. x Aut(Fym) on . /F5. The stabilizer of the set
I is just Iy x Aut(F,m ). So the orbit lengths of the point stabilizer on the
projective space are at most m. Therefore we get that the rank is at least

" -1)/(p—1) -1

>1 =1 _1)/m.
- + (" = 1)/m

1+

Thus p™ ! —1 < 2m, hence p = 2 and m = 3 or 4. If m = 4, then H has no
contribution coming from Aut(F;5) by the assumption of odd order, hence
the point stabilizer is even trivial. The case m = 3 indeed does occur.

Now suppose p = 3, m = 4. The transitive soluble subgroups of GL4(3)
are available for instance via GAP [61], and one immediately checks that
none of them induces a primitive group on the lines of Fj. O

In order to handle the case m = p?, we need the following

Lemma 2.4.6. Let p be a prime, and let H < GLy(p) act irreducibly on
IF‘%. Let w be a generator of the multiplicative group of F,, and suppose that

7:=(}8) € H. Then one of the following holds.

13
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(b) H is the group of monomial matrices.

(¢) p=05, and [GLy(5) : H] = 5.

(d) p=3, and H is a Sylow 2—subgroup of GLy(3).
(e) p=2, and H = C;.

Proof. The cases p = 2 and 3 are straightforward. So assume p > 5. If
SLy(p) < H, then H = GLy(p) and (a) holds, because the determinant of
T € H is a generator of F}.

So we assume in the following that H does not contain SLy(p). We first
contend that p does not divide the order of H. Suppose it does. Then H
contains a Sylow p—subgroup P of H. If P isnormal in H, then H is conjugate
to a group of upper triangular matrices, hence not irreducible. Therefore P is
not normal in H, thus H contains at least 1+ p Sylow p—subgroups of GLs(p)
(by Sylow’s Theorem). But GLy(p) has exactly p+ 1 Sylow p—subgroups, so
H contains all the p + 1 Sylow p-subgroups of GLy(p). But these Sylow
p-subgroups generate SLy(p), contrary to our assumption.

Set €' = <7>, and let S = F; be the group of scalar matrices. So C'S is
the group of diagonal matrices. First assume that H normalizes C'S. Then,
by irreducibility of H, some element in H must switch the two eigenspaces
of C. It follows quickly that H is monomial.

So finally suppose that C'S is not normalized by H. Then there is a
conjugate (CS)* with h € H, such that (CS) N (CS)" = S. So we have
|HS| > |(CS)(CS)" = (p—1)% and (p—1)?||HS|. First note that we cannot
have |HS| = (p — 1)® simply because (p — 1)* does not divide |GLy(p)| =
(p—1)*p(p+1). So |[HS| > p(p — 1) But again equality cannot hold, for
we noted already that p does not divide |H|. So |HS| > (p + 1)(p — 1)?,
hence [GLy(p) : HS] < p. But PGLy(p) = GLa(p)/S acts faithfully on the
coset space PGLy(p)/(HS/S) and has an element of order p, hence [GLy(p) :
HS] = p. A classical theorem of Galois [31, I1.8.28] says that if PSLy(p)
has a transitive permutation representation of degree p, then p < 11. But
one checks that GLs(p) does not have a subgroup of index p for p = 7 and
11, thus p = 5. So |HS| = 96 = 16 - 2 - 3. Therefore C'S (of order 16) has
a proper normalizer in HS. By an argument as above, we thus obtain an
element h € H which switches the eigenspaces of C. So <C,C"> < H is the
group of diagonal matrices, in particular S < H. The claim follows. O
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The following proposition is based on Hering’s [28], [29] classification of
transitive linear groups. Note that his results are incomplete, and the first
complete treatment is given by Liebeck in [47, Appendix 1].

Proposition 2.4.7. Let m > 5, and H < GL,(2) be irreducible on V :=
Fy*. Suppose there is an element T € H which is the the identity on a 2—
dimensional subspace U of V', and cyclically permutes the nonzero elements
of a complement W of U in V. Then either H = GL,,,(2), or m is even and
GLp/2(4) < H < TLy (4).

Proof. For a subspace X of V set X* := X \ {0}. We first want to show that
H is transitive on V¥#. The cycles of 7 on V* are {u}, u € U, and W* + u,
uw € U. If C; and C, are subsets of V*# such that each C; lies completely in
an H-orbit, then we say that C; and Cy are connected if they lie in the same
H-orbit. The latter is equivalent to the existence of h € H with C;NC} # 0.
Each of the cycles from above lies in an H-orbit, and the aim is to show that
the graph is connected which has as vertices these cycles where to vertices
are connected if and only if the corresponding cycles are connected.

We first show that for each v € U there is u # u' € U such that W* +«
and W! + u' are connected. Suppose that were not the case. Then, for each
heH,

(W +u)* € (WF +u) UU,
SO
Wh e (W +u—u")u (U —uh).

First assume that u # 0. Then not each element of U* — u” can be contained
in Wh, for this would imply the nonsense h=1(U*) C W* + u. Thus we get

Whn (W +u—uh)| >2m% - 3.

Let 7 be the dimension of W" N (W + u — u") as an affine space. It follows
that 27 > 2™ 2 -3 sor=m—2asm > 5. Thus W' =W for all h € H,
contrary to irreducibility of H.

Now suppose that © = 0. Then by the above

(WA\RLO) = W\ YUY C W +uc W,
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where W' is the (m — 1)-dimensional space W U (W + u). But the elements
in W\ h~1(U))" generate W, so Wh C W' for all h, again contrary to
irreducibility of H.

Let u € U* be such that W* and W* + u are connected. We show that
these two cycles must also be connected to another W* + ' for v’ € U*
different from u. Suppose that this were not the case. Let W' be the (m—1)-
dimensional space W U (W + u). Then, similar as above, (W')* c W/ U U,
for all h € H. But W'\ (W' N h=1(U)) generates W', so W' is h-invariant
for all h € H, again contrary to irreducibility of H.

From these two steps we see that all the W# 4« for u € U are connected.
Finally, let v’ € U*. Then also {u'} is connected to some and hence all the
W* + u, because (u')# generates V by irreducibility, so (uv')? ¢ U*.

Thus H is transitive on V¥. So we can use the Hering—Liebeck list [47,
Appendix 1] of such groups. Let L C End(V) be a maximal field which is
normalized by H. (L is unique, see [28, Lemma 5.2].) So |L| = 2* where s
divides m, and H < I'Ly,/4(2%). We get that SLy,/s(2°) < H < I'Ly,/5(2°), or
H < Spp(2) with m even. (The Hering-Liebeck result is more precise, but
this rough version is good enough here.) We claim that s = 1 or 2 in the first
case. As m > 5, we have s < m < 2™ 2 — 1 = ord(7), hence 7° has exactly
4 fixed points on V and 7° € GL,,/,(2°). Thus 2° < 4. If s = 2, then note
that the determinant of 7 as an L-endomorphism of V' is a generator of L*,
hence GL,,/2(4) < H in this case.

Finally, we need to show that H < Sp,,(2) cannot happen. Let (,-)
be the associated symplectic form on V. If v € V is non—zero, then the
stabilizer of v in Sp,,(2) has two orbits on V¥ \ {v} — the orbit of length
2m=1 — 2 through those v’ with (v,v') = 0, and the orbit of length 2™~!
through those v’ with (v,v’) = 1, see [31, 11.9.15]. Thus for u € U*, either
(u, W#) = 0 or (u,W*) = 1. We aim to show that the restriction of the
symplectic form to W is not degenerate. This is clear if (U,W) = 0. So
suppose there is u € U with (u, W¥) = 1. The orthogonal complement W+
intersects U non-trivially (for if u; and wuy are different elements in U with
(u;, W) =1, then (u; +ug, W) = 0). So the radical of W has dimension < 1,
hence in fact is trivial, because W has even dimension.

Therefore W is a non-degenerate symplectic space, where 7 acts irre-
ducibly on. So ord(7) divides 2(m=2/2 4 1 = 2d4mW/2 4 1 see Lemma 2.8.10,
contrary to ord(r) = 2™m~% — 1. O

The proof of the following lemma is straightforward.
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Lemma 2.4.8. Let m > 2, p a prime, and F' = U @ W with U and W
invariant under T € GL,,(p). Assume that T acts as a Singer cycle on W.

(a) Let dimU = 1, and suppose that T act as the identity on U. Choose
u € U*. Then (1,u) € AGL,,(p) acts as an element with cycle lengths
p and p™ —p on F.

(b) Let dimU = 2, p = 2, and suppose that T act as an involution on U.
Choose u € U with u # u”. Then (1,u) € AGL,,(2) acts as an element
with cycle lengths 4 and 2™ — 4 on F*.

Recall that if ¢ is a divisor of m, then we have I'L,,,(p") naturally em-
bedded in GL,,(p). We use this remark in the following

Theorem 2.4.9. Let A be a primitive affine permutation group of degree
p™. Suppose A contains an element which has exactly two cycles. Let k <
be the lengths of these cycles. Let Ay < GLy(p) be a point—stabilizer of A.
Then one of the following holds.

(a) (k,1) = (1,p™ — 1), and GLy,;,(p") < Ay < TLpe(p) for a divisor t of
m;

(b) (k,1) = (p,p™ — p), and A; = GL,,(p);

(c) (k,1) = (p,p*—p), and A; < GLo(p) is the group of monomial matrices
(here p > 2);

(d) (k1) = (4,2™ — 4), and A, = GL,(2);
(e) (Sporadic cases)

(i) (k,1) =(2,2), and Ay = GL1(4);
(ii) (k,l) =(2,6), and Ay = T'Ly(8);
(i11) (k,l) =(3,6), and Ay = T'Ly(9);
(i) (k,1) = (8,8), and [I['Ly(16) : A;] = 3;
(v) (k,1) = (8,8), and A; = T'L;(16);
(vi) (k,1) = (8,8), and A; = (C3 x C3) x Cy;
(vii) (k,l) = (8,8), and A; = XLy(4),
(viii) (k,1) = (8,8), and A, = TLy(4)
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(iz)
(z)
(i)
(ziv)
(zv) (K,

Proof. Without loss A < AGL,,(p), acting on N = F". Let o be the element,

with the cycle lengths £ and [. First note that £ divides [/, for otherwise
o' would fix | > p™/2 points, which of course is nonsense. So k = p’,
I=p"(p™ " — 1) for some r € Ny.

First suppose k < [. Then o* fixes exactly k = p” points on N. Without
loss o € GL,,(p), so the fixed point set of o* is a subspace N; of N. But
the elements of N; constitute the k—cycle of o, so o acts as an affine map
of order p” on the r—dimensional space N;. Apply Lemma 2.4.2 to see that
re{0,1,2},and r < 1ifp > 2.

If k =, then of course p =2 and k = [ = ord(c) = 2™!. Lemma 2.4.2
gives 2"~2 < m, hence r = m — 1 < 3.

We need to determine the possible groups A. If £ = 1 we use a result
of Kantor [33] which classifies linear groups over a finite field containing an
element which cyclically permutes the non-zero elements. Note that o is just
such an element.

Now suppose k = p. The element 7 := o € GL,(p) fixes a line U = T,
pointwise. As ged(ord(7),p) = 1, Maschke’s Theorem gives a complement W
of U which is 7—invariant. As 7 has cycles of length ord(7) = p™ 1 —1 = |W¥|
on W¥, we see that 7 permutes the elements of W cyclically. Look at the
action which A; and 7 induce on the projective space P(F;*). The element 7
has a fixed point (corresponding to U), a cycle of length (p™~! —1)/(p — 1)
(corresponding to W) and a cycle of length p™~! —1 (corresponding to u+W
for 0 # u € U).

Lemma 2.4.6 handles the case m = 2. So for the rest of this argument we
assume m > 3. We contend that A; is transitive on P(]F]T). By primitivity,
Ay is irreducible on F'; so it moves the fixed point of 7 as well as the cycle
of length (p™~' —1)/(p — 1). So if A; were not transitive, then A; would
leave U U W invariant. Let a € A; with W # W, and choose w € W with

(8,8), and Ay = As;

(8,8), and A; = GL4(2);

(4,12) or (8,8), and A; = (S3 x S3) X Cy;
(4,12) or (8,8), and A; = S5 < GL4(2),
(4,12) or ( 8), and A; = Sg < GL4(2);
(2,14)
(5,20)

Y Y

)
)

7

bl

k, 1)
k, 1)
k, 1)
k, 1)
k1) =
k1) =
k1) =

I

~ o~ o~ o~ o~ —~

2,14) or (8,8), and A; = A; < GL4(2);
5,20), and [GL2( ): A1l =5;

bl
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w® € U. Then W \ F,w is invariant under a. But W \ F,w generates W
because of m > 3, a contradiction.

Looking at 7 we see that A, is a transitive group on P(F) of rank at most
3. If Ay is even doubly transitive, then by Proposition 2.4.4 either p = 2,
m =4, and A; = Ay, or SL,,(p) < A;. It is easy to see that the determinant
of 7 is a generator of the multiplicative group of F,. Thus A; = GL,,(p) in
the latter case.

Next assume that A; has rank 3 on P(IF"). We first use Lemma 2.4.3 to
see that A; is also primitive. For if not, then 1 + a divides (p — 1)« with
a=(p™t—1)/(p—1),s0 1+ « divides p — 1, which of course is nonsense.

So we can apply Proposition 2.4.5. Suppose that Sp,,(p) < A;. However,
Spm(p) has rank 3 on P(F) and subdegrees 1, p™ ' and p(p™ > —1)/(p—1)
(see [31, I1.9.15]), which is not compatible with the cycle lengths of 7 we
determined above. Thus the other possibility of the proposition holds, that
isp=2,m =3, Ay = I'L;1(8), which indeed gives case (e)(ii) in the theorem.

To see that the groups listed in (b) and (c) indeed have an element with
cycle lengths p and p™ — p use Lemma 2.4.8, and similarly for the cycle
lengths 4 and 2™ — 4 in (d).

Next we look at the case p = 2 and k = 4. The case m < 4 is done by
inspection, so assume m > 5. Set 7 := o*. As above we see that F* = UW
with dimU = 2, 7 is trivial on U, and acts as a Singer cycle on W. In view
of Proposition 2.4.7 we need to show that GLy,/2(4) < A; < T'Ly,/5(4) is not
possible. Suppose that were the case. Write o = (8, v) with § € 'Ly, /2(4),

and v € ]FT/Q. First note that U? +v = U, so v € U and f3 leaves U invariant.
This easily implies 8* = 7. The intersection W N WP is not trivial (by
dimension reasons) and invariant under (%, so in particular invariant under
7. Hence W = W¥* by irreducibility of 7 on W. But W N W¥# is also
T—invariant, so (3 leaves W invariant by the same argument. As 7 = (34
permutes the elements of W cyclically, the same holds true for 5. Hence 3
has odd order 272 — 1 when restricted to W. In particular, § € GLy,/2(4).
On the other hand, as (8, v) has order 4 on U, the order of 5 on U must be a
divisor of 4. However, |GL;(4)| = 3, hence (3 is trivial on U. But then (4, v)
has order 2 on U, a contradiction.

The case k =1 =8, p = 2, is most conveniently done by inspection using
GAP [61]. O
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2.5 Product Action

Set A = {1,2,...,r} for r > 2, and let m > 2 be an integer. Then the
wreath product §;18,, = (S, X8, X --- X §,) ¥ 8y, acts in a natural way
on 2 := A XA X---xA. We say that a permutation group A acts via
the product action, if it is permutation equivalent to a transitive subgroup
of §,18,, in this action.

In order to avoid an overlap with the affine permutation groups, we
quickly note the easy

Lemma 2.5.1. Let A be a primitive subgroup of 8,1 S,, where r < 4. Then
A is affine.

Proof. Let N be the minimal normal subgroup of S,1S,,. Then N is ele-
mentary abelian of order ™. If A intersects N non-trivially, then N N A is
a minimal normal subgroup of A, and the claim follows. So suppose that
|JANN| =1. Then A embeds into (§,1S,,)/N. But r™ divides |A| by tran-
sitivity, so r™ divides (r!)™m!/r™. We get that 2™ divides m! if r = 2 or 4,
and 3™ divides m! if r = 3. But if p is a prime, then the exponent of p in m!

is Zyzo []%} < ZVZO » = po1 < m, a contradiction. 0

Remark. One might expect that any primitive subgroup of an affine group
is affine. However, that is not the case. There seem to be very few counter-
examples. The smallest is as follows: Set A = AGL3(2) = C3 x A;. Then it
is known (see e.g. [31, page 161]) that H'(GL3(2),C3) = C,. So there is a
complement U of C3 in A which is not conjugate to A;. One checks that U
acts primitively on the 8 points via U = GL3(2) = PSLy(7).

The following two lemmas are trivial but useful.

Lemma 2.5.2. Let A, Ao, ..., A, be finite sets, and g; be in the symmet-
ric group of A;. Let o; be the cycle length of g; through 6; € A;. Then the
cycle length of (g1, 92, - -, gm) through (61,09, ...,0,) € A1 X Ay X -+ - X Ay,
is lem (01, 0y, - . ., 0p). In particular, 6797 X 5597 x - - - x §59m> s the orbit of
<(91,92y- - gm)> through (81,09, ...,0m) if and only if the o; are relatively
prime.

Lemma 2.5.3. Let Ay, Ao, ..., A, be finite sets, and g; be in the sym-
metric group of A;. Let ¢; be the number of cycles of g; on A;. Then
(91,92, - - -, gm) has at least cica - - - ¢ cycles on Ay X Ag X - - X Ay,
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Lemma 2.5.4. Suppose r > 5 and m > 2. Let g = (01,09,...,0,)T be an
element of S;18,,, with o; € S, and 7 € S,, an m—cycle. Then g has at
least 3 cycles in the product action.

Proof. Set g := g™ = (61,02,... ,0m) € SI". Then
0; = 0i0iq1" " Om01 - 01,

so in particular the &; are pairwise conjugate in §,. Suppose that g has at
most 2 cycles. Then g has at most 2m cycles.

Let A be the number of cycles of 7. Then g has at least A™ cycles by
Lemma 2.5.3, hence \™ < 2m. This gives A = 1 unless m =2 and A = 2. If
A =1, then g has 7™ ! cycles by Lemma 2.5.2, so r™! < 2m, hence r < 4,
a contradiction. So suppose that m = 2 and &7 has two cycles. Then g has
obviously at least 6 > 2m cycles, a contradiction. O

The main result of this section is

Theorem 2.5.5. Let A be a primitive non—affine permutation group in prod-
uct action. Suppose A contains an element which has exactly two cycles. Let
k < be the lengths of these cycles. Then one of the following holds.

(a) A= (S, x8,)xCy withr >5, k=ra, | =r(r—a) with ged(r,a) =1;
or

(b) A= (PGLy(p) x PGLy(p)) x Cy with p > 5 prime, k = p+1, 1 = p*+p.

Proof. We assume that A < §,1S,, with » > 5 (by Lemma 2.5.1) and m > 2.
Let g = (01,09,... ,0m)T With 0; € S;., T € Sppr.

Assume that g has exactly 2 cycles. By the previous lemmas, we get that
m = 2 and 7 = 1, one of the g; must be an r—cycle, and the other o; has two
cycles, with lengths relatively prime to 7.

We need to determine the groups which arise this way. The description
of the product action as in [48] shows that there is a primitive group U with
socle S acting on A = {1,2,...,7}, such that S x S < A < (U x U) x Cy.
Let g = (01,02) be the element with the two cycles from above. Then
(09,01) € (U x U) x Cy. Thus U contains an r—cycle, and an element
with two cycles of coprime lengths. In particular, U is not contained in the
alternating group A,, and so is not simple. Furthermore, U is not affine.
Taking Propositions 2.3.1 and 2.3.2 together gives that either U = PGLy(p)
for a prime p > 5, or U = S, for r > 5. The element g shows that U xU < A,
but U x U is not primitive, so A = (U x U) x Cy, and the claim follows. O
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Remark 2.5.6. Case (c) of Theorem 2.4.9, that is A < GLy(p) for a prime
p > 2 and A; the group of monomial matrices, can also be seen as a product
action, namely as A = (AGL;(p) x AGL;(p)) x C, on p? points.

2.6 Regular Action

As an immediate consequence of the previous section we obtain

Theorem 2.6.1. Let A be a primitive non—affine permutation group with
a reqular normal subgroup. Then A does not contain an element with two
cycles.

Proof. Let N be a regular normal subgroup of A. Then, by regularity, N is
a minimal normal subgroup of A, so N = L™ for some simple non-abelian
group L and m > 2. Identify N with the set of points A is acting on, and
let C be the centralizer of N in the symmetric group S(N) of N. If N acts
from the right on N, then C' = N acts from the left on N. Set H = L x L,
and let the first and second component act from the left and from the right,
respectively. Then A is contained in the wreath product H S, in product
action, see [48, page 392|. Now apply Theorem 2.5.5 to see that this cannot
occur, a distinguishing property of H being that it is not doubly transitive
(in contrast to PGLy(p)). O

2.7 Diagonal Action

Let S be a non-abelian simple group, and m > 2 an integer. Set N :=
S™. Let N act on itself by multiplication from the right. Furthermore,
let the symmetric group S,, act on N by permuting the components, and
Aut(S) act on N componentwise. Define an equivalence relation ~ on N by
(I1,loy ...y lm) ~ (cly,cly, ..., cly) for ¢ € S. The above actions respect the
equivalence classes, so we get a permutation group D acting on the set N/~
of size |S|™~!. Note that the diagonal elements of N in right multiplication
induce inner automorphisms of S on N/~, for (7 i, 17 g, ..., 17 1) ~
(I, 0oy oo b)) (4,0, . oo ).

We say that a permutation group A acts in diagonal action, if it embeds
as a transitive group of D with N < A.

We begin with a technical
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Proposition 2.7.1. Let S be a non—abelian simple group, m > 2 be an
integer, and D be the group in diagonal action as above. Let o(Out(S)) and
o(S) be the largest order of an element in Out(S) and S, respectively. Then
each element of D has at least WQS\/O( )™ cycles.

Proof. Choose an element in D. Raise it to the smallest power such that the
contribution from Out(S) disappears. Let 0 € N x S, be this element. Set
0o = 0(S). We are done once we know that ¢ has at least ‘; (IS|/0)™ cycles.
Write o = (01,09, ...,0,)7 with 7 € S, and 0; € S. Let 7 have u cycles of
lengths p1, po, ..., pu-

Without loss assume that the first p; coordinates of N = S™ are per-
muted in an p;—cycle (1 2 --- p;). Write p for p;. Then o acts by right
multiplication with

(01,02, ...,0,) = (0102 0,,0203 - 0,01, ...,0,01-0p_1) €S’

on these first p coordinates. Note that all the elements ; have the same
order o' because they are conjugate in S. So, by Lemma 2.5.2, ¢” induces
|S|? /0" > |S|P/o cycles on S, thus o induces at least |S|?/(po) cycles on S”.
Apply this consideration to the other 7—cycles and use Lemma 2.5.3 to see
that the number of cycles of 0 on N is at least

u

|5|mH_

=1 Pi
u u
mo
where we used the inequality between the arithmetic and geometric mean
in the last step. But the function (z/(mo))® is monotonously decreasing for
0 <z < mo/e. Note that o > 5 (because a group with element orders < 4 is
solvable), so mo/e > m, but v < m. So the above expression is > (|.S|/0)™

Furthermore, the number of cycles of o on N is at most |S| times the number
of cycles on N/~. From that we get the assertion. O

Theorem 2.7.2. Let A be a primitive permutation group in diagonal action.
Then A does not contain an element with at most two cycles.

Proof. Suppose there is a counterexample A, with associated simple group
S. Proposition 2.7.1 gives, as m > 2,

S| < 20(8)20(Out(S)).
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If S is sporadic, then use list 2.3 on page 60 along with the group orders given
in the atlas [8] to see that this inequality has no solution. Next suppose that
S = A, is alternating. Then Out(S) = Cs if n # 6, and Out(Ag) = Cs x Cs,
so o(Out(S)) = 2 in any case (see e.g. [31, I1.5.5]). Use the bound o(S) < e™/*
from Proposition 2.8.4 to see that only n = 5 is possible with m = 2. But
it is easy to take into account the possible outer automorphism and show
along the lines of the previous proposition that the minimal number of cycles
of an element in A is 4 (all of length 15), or one checks that with a GAP
computation.

So we are left with the case that S is simple of Lie type. Using the
information about Out(S) and o(S) in the Tables 2.2 (page 59) and 2.1
(page 58) and in Section 2.8.3 together with the order of S given for instance
in the atlas [8], one sees that the only group which does fulfill the above
inequality is S = PSLy(7). (One also has to use the atlas [8] in some small
cases where the given bounds for o(.S) are too coarse in order to exclude S.)

However, the proof of the proposition above shows that we have m = 2,
u = 2, and ord(o7)ord(cz) > 168/4 = 42, hence ord(c;) = ord(oz) = 7, so o
has at least 1682/(7 - 168) = 24 cycles on S?/~, a clear contradiction. [

2.8 Almost Simple Action

The aim of this section is

Theorem 2.8.1. Let A be a primitive permutation group of degree n, such
that S < A < Aut(S) for a simple, non—abelian group S. Suppose A contains
an element which has exactly two cycles. Let k < | be the lengths of these
cycles. Then one of the following holds.

(a) A, < A<S, in natural action.

(b) (k,1) = (5,5), and A5 < A < S5 in the action on the 2-sets of
{1,2,3,4,5).

(c) (k,1) = (1,p), and PSLa(p) < A < PGLy(p) for a prime p.

(d) k=1=(¢"—1)/(2(¢ — 1)), and PSL,,(q) < A < PT'L,,(q) for an odd
prime power q and m > 2 even.

(6) (k,l) = (2, 8), and MlO S A S PFLQ(Q)
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7,14), and PSL3(4) < A < PT'Ls(4).

1,11) or (4,8), and A = My, in its action on 12 points.

(k,0) = (
(k,0) =(

(h) (k1) = (1,11), (2,10), (4,8), or (6,6), and A = My.
(k,1) = (11,11), and Mgy < A < Aut(Myp) = My 3t Cs.
(k,0) = (

1,23), (3,21), or (12,12), and A = My,.

Remark 2.8.2. The simple group S is either alternating, sporadic or of Lie
type. We deal with these cases in separate sections, as they require quite
different arguments. See Section 2.8.7 where all the results achieved in the
following parts are bundled to give a proof of the above theorem.

Many cases of almost simple permutation groups can be ruled out by
comparing element orders with indices of (maximal) subgroups of groups
between S and A, though some other require finer arguments. For a finite
groups X let u(X) be the smallest degree of a faithful, transitive permutation
representation, and o(X) the largest order of an element in X. We use the
trivial

Lemma 2.8.3. Let A be a transitive permutation group of degree n, and let
o € A have two cycles in this action. Then

n < 2ord(o) (2.1)
n < 3ord(0)/2, if n is odd.

2.8.1 Alternating Groups

Using methods and results from analytic number theory, one can show that
the logarithm of the maximal order of an element in S, is asymptotically
vnlogn, see [42, §61]. Here, the following elementary but weaker result
is good enough for us — besides, we need an exact bound rather than an
asymptotic bound anyway.

Proposition 2.8.4. The order of an element in S, is at most "¢ for all

n €N, and at most (n/2)V™/? forn > 6. (Here e = 2.718... denotes the
Euler constant.)
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Proof. Let vy,vs,...,v, be the different cycle lengths > 1 of an element
g € S,. Then

ord(g) = lem(vy,va, ..., 1) < ViV« - Uy,
and
n+ve+---+uv <n. (2.3)
The inequality between the arithmetic and geometric mean yields

ord(g) = lem(vy,vs, ..., 1)

e Uy
< (ZnY
o r
n T
<(%)"
T
The function z — (n/x)* is increasing for 0 < z < n/e, and decreasing for

x > nj/e. From that we obtain the first inequality.
Suppose that v, < vy < --- < v,.. Then v; > ¢+ 1, and we obtain

r2+3r r?

> >243 4. 1) = T
n>Y v >243+ 41+ (r+1) > S
If n > 2e? = 14.7..., then r < v/2n < n/e, and the claim follows from the
monotonicity consideration above. Check the cases 6 < n < 14 directly. O

Now suppose that A4, < A < Aut(A,) for n > 5. Note that except for
n =6, Aut(A,) = S, by [31, I1.5.5]. We exclude n = 6 in this section, and
treat this case in Section 2.8.3 about classical groups, because Ag = PSLy(9).

So A; is a maximal subgroup of A not containing A4,. Let o € A have at
most two cycles on A/A;. We regard A; as a subgroup of S,, > A in the nat-
ural action on {1,2,...,n} points. There are three possibilities for A; with
respect to this embedding: A; is intransitive, or transitive but imprimitive,
or primitive. We treat these three possibilities separately.

A, intransitive

A leaves a set of size m invariant, with 1 < m < n. Denote by M,, the
subsets of size m of {1,2,...,n}. By maximality of A; in A and transitivity
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of A on M,, we see that A; is the full stabilizer in A of a set of m elements,
thus the action of A is given by the action on M,,. If m = 1, then we have
the natural action of A, leading to case (a) in Theorem 2.8.1. So for the
remainder assume m > 2.

First consider the case that ¢ is an n—cycle in the natural action. One of
the two cycles of o has length at least ()/2, so n > ()/2 > n(n — 1)/4,
thus n = 5. This case really occurs, and gives case (b) in Theorem 2.8.1.

Next suppose that o is not an n—cycle. Then o leaves (on {1,2,...,n})
a set S of size 1 < |S| < n/2 invariant. Without loss m < n/2 (as the action
on the m-sets is the same as the action on the (n — m)-sets). Note that o
cannot be an (n—1)-cycle by an order argument as above. So we can assume
|S| > 2. For i =0,1,2 choose sets S; of size m, such that ¢ points of S; are in
S, and the remaining m — ¢ points are in the complement of S. Then these
three sets of course are not conjugate under <o>.

A transitive but imprimitive

Let 1 < u < n be the size of the blocks of a non-trivial system of imprim-
itivity. Then v := n/u is the number of blocks, and 4; = (S,1S8,) N A =
((84)" ¥ S,) N A in the natural action (not to mistake with the product
action).

The index of A; in A thus is n!/((u!)?v!). We will use the bounds in
Lemma 2.8.3 and Proposition 2.8.4 to see that this case does not occur. The
proof is based on the following

Lemma 2.8.5. Let u,v > 2 be integers, then

1 (uw)!
ul’v! < 3 quvje’

except for (u,v) = (2,2), (3,2), (4,2), and (2, 3).

(2.4)

Proof. We contend that if the inequality (2.4) holds for (u,v), then it holds
also for (u,v +1). First

3\’ 3\"

eu/e < 3u—1 < (’U + 1)u—1.

hence
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This implies
(v+1)e"* < (v41)" (2.5)
But
v+1< 2 —H
?
forv=1,2,...,u, so taking the product over these 7 yields
0+ 1) < (uv-l—u)7
u
SO

(’U+1)€u/6 S (UU+U)
u

by (2.5). Multiply the resulting inequality

(uv + u)!
! 1) < ——+
ul(v +1) (uw)lew/e

with (2.4) to obtain the induction step for v.

Next we show that (2.4) holds for v = 2 and u > 7. As (**) appears
as the biggest binomial coefficient in the expansion of (1 + 1)%*, we obtain
(**) > 5-152%. Inequality (2.4) for v = 2 reduces to

u 2u+1
2u > 4e?v/e,
u

So we are done once we know that

722u > 4 2u/e,
2u +1 ¢

which is equivalent to

92 2u
(m) > 4(2U+ 1)

But it is routine to verify this for u > 7.
In order to finish the argument, one verifies (2.4) directly for u < 7 and
the least value of v where the inequality is supposed to hold. O

As uv > 5 and uv # 6 by our assumption, we have the only case u = 4,
v = 2. But 8!/(4!?2!) = 35, and the maximal order of an element in Sg is 15,
contrary to Lemma 2.8.3.
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Ay primitive

Now suppose that A; is primitive on {1,2,...,n}, hence ["TH}' < [Sn i A4
by a result of Bochert, see [3] or [73, 14.2]. Here [z] denotes the biggest
integer less than or equal z. As A has index at most 2 in §,,, we obtain from
Lemma 2.8.3 and Proposition 2.8.4

[n—i—l

}! < 2[A: Ay < 4eMe.

However, one verifies that for n = 9 and 12 the following holds

[n—i—l

] I > 4e™/e. (2.6)

But if (2.6) holds for some n > 9, then it holds for n + 2 as well, as the
left side grows by the factor [(n + 3)/2], whereas the right side grows by the
factor e?/¢ < [(n + 3)/2].

So we are left to look at the cases n € {5,7,8,10}.

Suppose n = 5. The only maximal transitive subgroup of S5 not contain-
ing A5 is A := C5 x C4, and the only maximal transitive subgroup of Aj is
ANAs = C5 x Cy. So the index is 6, and these cases indeed occur and give
(c) in Theorem 2.8.1 for p = 5.

Now assume n = 7. The only transitive subgroups of &7 which are max-
imal subject to not containing A; are AGL;(7) and PSL3(2). Of course, the
index of AGL;(7) in S7 is much too big. The group PSL3(2) is contained
in A7, and has index 15. But the maximal order of an element in A7 is
7 < 15/2, so this case does not occur by Lemma 2.8.3.

Now assume n = 8. Similarly as above, we see that the only case which
does not directly contradict Lemma 2.8.3 is A; = AGL;3(2) inside PSL,(2) =
Ag. But then A = PSL4(2) in the natural degree 15 action on the projective
space. Lemma 2.8.30 shows that this case actually does not occur.

Finally, if n = 10, then we keep Bochert’s bound, but use Proposition
2.8.4 to see that the order of an element in Sy is at most 5Y° = 36.55.. .,
hence at most 36. (The exact bound is 30.) So 5! < 2-36 by Lemma 2.8.3,
a contradiction.

2.8.2 Sporadic Groups

Let S be one of the 26 sporadic groups. Table 2.3 on page 60 contains infor-
mation about small permutation degrees, big element orders, and the outer
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automorphism group. The atlas [8] contains all this information except for
the maximal subgroups of the Janko group J;, the Fischer groups Figy, Flios,
and F'ii,, the Thompson group Th, the baby monster B, and the monster
group M. For the groups Jy, Fligg, Flig3, and Th we find the necessary infor-
mation in [39], [38], [37], and [50], respectively. The bounds for the groups
Fil,, B, and M have been marked with a *, as they are not sharp. We got
them, using the following trivial remark, from the character tables in [8]: If
M is a proper subgroup of S with index n, then the permutation character
for the action of S on S/M is the sum of the trivial character and a character
of degree n — 1 which does not contain the trivial character. Thus n — 1 is
at least the degree of the smallest non-trivial character of S. (In view of
the applications we have in mind we could have used this argument in most
other cases as well.)

Now S < A < Aut(S) for a sporadic group S. Let 0 € A be an element
with only two cycles in the given permutation action. By Lemma 2.8.3 we
get u(S) < 2|0Out(S)[o(S). We see that the only possible candidates for S
are the five Mathieu groups.

The atlas [8] provides the permutation characters of the simple groups
of not too big order on maximal subgroups of low index. In the case of
the Mathieu groups in the representations which are possible, we thus can
immediately read off the cycle lengths of an element. Namely the atlas also
tells in which conjugacy class a power of an element lies, so we can compute
the fixed point numbers of all powers of a fixed element.

S = Mjy;. Then A = My, either in the natural action of degree 11, or in
the action of degree 12. The degree 11 case cannot occur for the following
reason. By Lemma 2.8.3 ord(o) > (2/3)11, so ord(c) = 8 or 11. An element
of order 11 is an 11—cycle. An element of order 8 has a fixed point, so if it
would have two cycles, the other cycle length had to be 10, which is nonsense.
Now look at the degree 12 action. Then of course an element of order 11 has
cycle lengths 1 and 11, and one readily checks that an element of order 8 has
cycle lengths 4 and 8, whereas an element of order 6 has a fixed point, hence
must have more than 2 cycles.

S = Mj2. The smallest degree of a faithful primitive representation of
Aut(M;s) is 144 (see [8]), which is considerably too big. So we have A = M,
in its natural action. As My; < Mi,, the elements of order 11 and 8 in My,
with only two cycles appear also in M,. Besides them, an element of order
10 has cycle length 2 and 10, and an element in one of the two conjugacy
classes of elements of order 6 has cycle lengths 6.
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S = Mjys. We have the natural action of S of degree 22, and A < Mgy X Cs.
An element of order 11 has two cycles of length 11. An element in S of order
8 has cycle lengths 2, 4, 8, 8, so this element cannot be the square of an
element with only 2 cycles. An element of order 7 has one fixed point, so it
cannot arise either. And an element in S of order 6 has 6 cycles, so is out
too.

S = Ms3. Here A = My in the natural action of degree 23. An element
of order 23 is a 23—cycle. Looking at the fixed points of elements of order
3 and 5 we see that an element of order 15 has cycle lengths 3, 5, and 15.
Similarly, an element of order 14 has cycle lengths 2, 7, and 14. So this group
does not occur at all.

S = Mgyy4. Here A = My, in the action on 24 points. One quickly checks
that the elements of order 14 and 15 have a fixed point, so they do not occur.
The elements of order 23, 21, and from one of the two conjugacy classes of
elements of order 12 have indeed two cycles of the lengths as claimed.

2.8.3 Element Orders in Classical Groups

Our goal is to show that S = PSL,,(g), and that except for a few small cases,
the action is the natural one on the projective space over F,. The main tool
for doing that are good upper bounds for element orders in automorphism
groups of classical groups.

The following lemma controls the maximal possible orders of elements in
linear groups, if they are decorated with a field automorphism.

Lemma 2.8.6. Let q be a power of the prime p, E be an algebraic closure of

F,, and G < GL,(F,) be a connected linear algebraic group defined over F,.
For E a subfield of F,, denote by G(E) the group G N GL,(E) of E-rational
elements.

Suppose that E is finite, and let v € Aut(E). Then G(E) is normalized
by <y>. Take g = vh in the semidirect product of <y> with G(E), where
h € G(E). Let f be the order of v, and F the fized field in E of v. Then g’
is conjugate in G to an element in G(F).

Proof. Clearly <y> normalizes G(E), as G is defined over F,. We compute
gf —pr . - h'h,
thus
(¢")" = hg’h .

31



CHAPTER 2. PRIMITIVE GROUPS WITH A TWO-CYCLES
ELEMENT

Extend 7 to F,, and denote the induced action on G also by 7. By Lang’s
Theorem (see [68, Theorem 10.1]), the map w — w w™' from G to G is
surjective. Thus there is b € G with

h=0b"b""
Therefore
(b7'g7b)" = b""g'0,
so b~1g’b is fixed under v, hence contained in G(F). O

In order to apply this lemma, we need the following easy estimate:

Lemma 2.8.7. Let q, f,r be positive integers such that 2/ < q. Then f -
gl <q.

Proof. We have
qT(l—l/f) > or(f=1) > o/~ > 1,
and the claim follows after multiplying with ¢"/7. O

Lemma 2.8.8. Let ¢ be a power of the prime p. Let o € GL,(q) act in-
decomposably on V' := Fy. Then the order of o divides p°(¢* — 1), where
u divides n, and p*' < nju —1 if b > 0. Furthermore, o?"(@"=D/(a=1) js g
scalar, and p°(¢* — 1) < ¢™ — 1. So in particular ord(c) < ¢ — 1, and the
order of the image of o in PGLy(q) is at most (¢" —1)/(qg — 1).

Proof. Write 0 = o,0,, where o, and o, are the p’~prime part and p—part
of o, respectively. Let

V=U,0Us®---® Uy,

be a decomposition into irreducible o,y—modules. Such a decomposition exists
by Maschke’s Theorem.

Let U be the sum of those U; which are oy—isomorphic to U;. As o,
commutes with o,, we get that U;? is op—isomorphic to U; for each i. By
Jordan—Holder, U is a o—invariant direct summand of V. The indecompos-
ability of V' with respect to o gives U =V, so all U; are o,—isomorphic.

Let v be the common dimension of U;, so n = um. By Schur’s Lemma,
the restriction of o, to each U; can be identified with an element of the
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multiplicative group of F,«. As o commutes with o,/, we can consider ¢ and
o, as elements in GL,,(¢*). So either o, = 1, or p* := ord(o,) < p(m — 1)
by Lemma 2.4.1. Also, with respect to this identification, o,y is a diagonal
matrix. So U;,?u_l)/(q_l) acts as a scalar \; € F; on U;. However, the )\; are
independent of ¢, because the U; are o, —isomorphic.

To finish the claim, we need to show that p°(¢* — 1) < ¢“™ — 1. This is

clear for b = 0. For b > 1, this follows from p® < p(m — 1) and

um _ |
qq"—l =14+¢" 4+ ¢V >14¢%m—1) > p.
(Note that b > 1 implies m > 1.) O

We obtain the following consequence
Proposition 2.8.9. Let g be a prime power, and n > 2.
(a) If o € TLy,(q), then ord(o) < ¢" — 1.
(b) If € PT'L,(q), then ord(c) < (¢"—1)/(q—1), except for (n,q) = (2,4).

Proof. First assume that 0 € GL,(g), and denote by & the image of ¢ in
PGL,(q). Let Ty =1V = Vi@ --- @V, be a decomposition of V' into o
invariant and o—indecomposable modules V;. Let n; be the dimension of
V;. By Lemma 2.8.8, the order of the restriction of o to V; divides a; :=
p% (g% — 1), where u; divides n;, and a; < ¢ — 1. The order of o divides
the least common multiple of the a;. First suppose that » > 1. Then ¢ — 1
divides each q;, so

ord(o) < lem(ay,...,a,)
< (a1---ar)/(g=1)
<" =1 (¢ -1/(g-1)
<(¢"-1/(g-1)

If however » = 1, then Lemma 2.8.8 applies directly. So in either case, (a)
and (b) hold for GL,(q) and PGL,(q), respectively.

Now assume that o € I'L,(¢) \ GL,(¢q), and let f be the smallest positive
integer with o/ € GL,(¢q). Note that f > 2. By Lemma 2.8.6, 7 := o/ is
conjugate to an element 7' € GL,(r), where r := ¢'//. (We take the natural

33



CHAPTER 2. PRIMITIVE GROUPS WITH A TWO-CYCLES
ELEMENT

inclusion GL,,(r) < GL,(g).) Part (a) is clear, as, by what we saw already,
ord(o) < ford(of) < fr® < ¢", where we used Lemma 2.8.7 in the last step.
Part (b) requires a little more work. We have, similarly as above,

r—1

Ord(ﬁ) < f’l‘—ilj

and are done once we know that

T"—1<r"f—1_q"—1

fT—l —rf-1  ¢-1

which is equivalent to

rf—1 -1
r—lsr"—l' (2.7)
Note that (z/ —1)/(x —1) = 1+ x + --- 4+ 27! is strongly monotonously
increasing for z > 1, so inequality (2.7) holds once it holds for n = 2. In this
case, we have to show that f < (r/ +1)/(r +1). It is easy to see that this
last inequality holds except for f = 2, r = 2. But then (2.7) is equivalent to
6 < 2" 4 1, which is clearly the case for n > 3. O

Remark. PI'l,(4) is indeed an exception for part (b) of the previous the-
orem. Note that PT'Ly(4) = S5, so this group contains an element of order
6>5=(4>-1)/(4-1).

Lemma 2.8.10. Let V' be a vector space of dimension n > 2 over F, with
a non-degenerate bilinear form k = (-,-). Let 7 € Isom(V, k) be an isometry
with respect to this form, and assume that 7 is irreducible on V. Then n is
even and the order of T divides ¢"? + 1.

Proof. By Schur’s Lemma we have V = F,», and the action of 7 induced on

Fgn is by multiplication with A € Fy,., where Fy[A] = Fn. The eigenvalues

of 7 then are the powers M fori=0,1,...,n—1. Letv; € V ® Fgn be
an eigenvector to the eigenvalue \?'. The form (-,-) extends naturally to a
non-degenerate form on V ® F;». Thus there exists i with (vg,v;) = ¢ # 0.
This gives ¢ = (v,v7) = (Avg, \7v;) = A7 (vg, v;) = A H9¢, so A0 = 1.
Thus A € Fp2i, so n | 2i. But i < n, hence 2i = n, and the claim follows. O
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Lemma 2.8.11. Let V' be a vector space over the finite field F' with a non—
degenerate symmetric, skew-symmetric, or hermitian form k = (-,-). Write
F =T, if & is bilinear, and F = Fp if k is hermitian. Let o € Isom(V, k) be
an isometry with respect to k. Suppose that o is semisimple and orthogonally
indecomposable, but reducible on V. Then the following holds:

V=Z®Z, where Z and Z' are o—irreducible and totally singular spaces
of the same dimension. Let A and A' be the set of eigenvalues of o on Z and
Z', respectively. Then

;NN A e A} if k is bilinear,
{A\Y X e A} if k is hermitian.

Furthermore, if k is not skew—symmetric, then Z is not c—isomorphic to
AR

Proof. Let Z be a o-invariant subspace of minimal positive dimension, in
particular Z is o-irreducible. Also Z* is o-invariant. Furthermore, Z is
totally singular, for otherwise V' = Z1Z' by irreducibility of Z. As o
is semisimple, there is a o—-invariant complement Z' of Z+ in V. From
dim(Z') = dim(V) — dim(Z+) = dim(Z) and the minimality of dim(Z) we
get that Z' is o—irreducible as well. We get V = Z @ Z’ once we know that
Z @ Z' is not degenerate. But this follows from

ZeZYn(ZeZ)Vr=ZoZ)nZtn(Z)*t
=7Zn(Z')*
= {0},

where the latter equality holds because Z’ is a complement to Z+, therefore
Z is not contained in (Z')*.

Next we show the assertion about the eigenvalues if k is bilinear. Let A
be an eigenvalue of o with eigenvector v € Z ® F,. Let w € Z’ ® F, be such
that V ® E is the span of w and v', and that w is an eigenvector of o. Let
u be the corresponding eigenvalue. By construction, p := (v, w) # 0, hence

p=(v,w) = (v, w%) = (v, pw) = A\up,

and the claim follows, as we can also switch the role of Z and Z' in this
argument.
The case that  is hermitian is completely analogous.
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Finally, suppose that k is not skew-symmetric, and assume in contrary
that there is a o—-isomorphism ¢ : Z +— Z'. Let R = F,[o] < End(V)
be the algebra generated by o. As k is not skew—symmetric, there is an
element v € V with (v,v) # 0. Write v = z + 2/ with z and 2’ in Z and
Z', respectively. Clearly z and 2’ are non-zero. By Schur’s Lemma, R acts
sharply transitively on the non-zero elements of Z’, in particular, there is
p € R such that (2%)? = 2'. Let v : Z — V be the homomorphism defined
by w? := w+ (w?)?. This map is clearly injective, 1) commutes with o, so the
image Z¥ has the same dimension as Z, and of course is o-irreducible as well.
By construction, the element v = 2¥ is not isotropic, so Z¥ is not totally
singular, thus & restricted to Z¥ is not degenerate. We get V = Z¥ 1 (Z¥)+,
contrary to indecomposability. O

Remark. Let V be 2-dimensional with a non-degenerate skew-symmetric
form, and o the identity map. As V is clearly not the orthogonal sum of two
1-dimensional spaces, we cannot dispense of the assumption that x is not
skew—symmetric in the last part of the lemma.

We now extend the previous lemma to those o which are not necessarily
semisimple.

Lemma 2.8.12. Let V be a vector space over F, with a non-degenerate
symmetric, skew-symmetric, or hermitian form k = (+,-). Let o € Isom(V k)
be an isometry with respect to this form. Assume that o is orthogonally
indecomposable, but reducible on V. Denote by o, the p'-part of . Then
the following holds:

V= (UlUsl ... LU L(Zi® Z))L... L(Z,® 7)),

where the U;, Z; and Z! are oy—irreducible, the U; and (Z; ® Z!) are not
degenerate, the Z; and Z! are totally isotropic and the U;, Z; and Z! have all
the same dimension. Also, r + 2s > 2.

Proof. Choose an orthogonal decomposition of V' into non-trivial o,y —invariant
subspaces of maximal length, so these subspaces do not decompose orthogo-
nally into smaller o, —invariant spaces. Let the U; be those subspaces which
are oy—irreducible, and let the (Z; ® Z) be the remaining ones according to
the previous lemma.

The o,,~homogeneous components Hy, Hy, ... are o-invariant as a conse-
quence of Jordan—Holder. Let H be the sum of those Hy where the irreducible
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summands of Hy have the same dimension as those of H;. Then Z; appears
in H if and only if Z] appears in H. The orthogonal indecomposability of o
forces H =V.

Suppose that r + 2s < 2. Then s = 0 and r = 1, that is ¢ is irreducible
on V = U, a contradiction. O

Lemma 2.8.13. Let ¢ > 2 and my, my,...,m, be distinct positive integers
with sum m. Then

p
[ +1) < et/mgm,

=1

Proof. For x real we have 1+ z < e”. Substitute x = 1/¢™ and multiply by
g™ to obtain

™ 1< gmiet/ T
Multiply these inequalities for 2 = 1,2, ..., p to obtain

[T@™ +1) < qme®,

with
1 =1 1
E s < _ = —
Z i = Z k _ 1’
o 4" =1 4 ¢—1
as the m; are distinct. The claim follows. O

Lemma 2.8.14. Use the notation from Lemma 2.8.12 with k bilinear, and
let z be the common dimension of the spaces Z;, Z;, U;. Set w := r + 2s,
thus v := dim(V) = wz. Then there is a non—negative integer b, such that
ord(o) divides p®(¢°> — 1). Furthermore,

29"/ in any case,
ord(c) < < ¢/2 if ord(o) is odd,
g2 if g is even, and (q,w, 2) # (2,2,2) or (2,3,2),

If =2 and v = 4 or 6 and ord(c) > 2%/2, then ord(c) = 6 if v = 4, and
ord(c) =12 if v = 6.
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Proof. As the spaces Z;, Z], and Uj; are all o, —irreducible of dimension z, it
follows that the order of o, divides ¢* — 1. Let p® be the order of the p—part
of 0. As w > 2, hence z < [v/2], the stated inequalities clearly hold for
b =0. Thus assume b > 1 from now on.

First assume p > 2. We are clearly done except if

p'(g° —1) > 247 (2.8)

From (2.8) we obtain

pqu > Qq[wz/Z].

As each factor except 2 is divisible by p, we obtain from that even sharper

p°q* > pgv#/?,

hence

pb—lqz > q[wz/Q}' (29)
Let w' be the number of elements in a maximal subset of the summands Z;,
Z], and U; which are pairwise o, —isomorphic. Then the restriction of o, to
the sum of these spaces can be seen as an element in GL,(¢?), so the order
of this restriction is bounded by p(w’ — 1), see Lemma 2.4.1. Clearly w' < w,
hence p®~! < w — 1. So with (2.9) we obtain further

w—1> q[wz/Q]fz.

We first contend that w < 5, and that z = 1 if w > 2. For suppose z > 2.
Then [wz/2] — 2z > w—2,as w > 2. So w— 1 > ¢“~2, which gives w = 2.
Is is easy to see that w — 1 > ¢*/2~1 gives w < 5. Suppose w = 4 or 5.
We obtain ¢ = 3. Furthermore, b < 2, so b = 2 for otherwise we are done
(check (2.9)). As V decomposes into 1-dimensional eigenspaces for o3, the
eigenvalues are in 3 \ {0}, so we have that ord(cs) is at most 2, hence the
order of ¢ is at most 2 - 3% = 18, the exact bound we wanted to prove (and
which is sharp indeed).

Now suppose w = 3. Clearly b = 1. We have either r = 3, s = 0, or
r =1, s = 1. In the first case o, restricts to an element of order at most 2
on each U;, so the order of ¢ divides 2p, and the claim follows. Thus assume
r =1, s =1. Let A be the eigenvalue of oy on U;. Clearly A = +1. Also,
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A is an eigenvalue on Z; or Z{, for otherwise U; were o—invariant, contrary
to orthogonal irreducibility. By Lemma 2.8.11 the eigenvalues on Z and 7’
then are £1, so the order of o, is at most 2, and we are done again.

Finally, we have to look at w = 2. Here we have not necessarily z = 1.
First suppose that s = 0, that is V = U; ® U,. The order of o,y on V' divides
¢#*? + 1. The claim follows as p(¢¥/% + 1) < 2¢* = 2¢*/4. Thus suppose
that r =0,s=1,s0 V = Z, @ Z|. Let A € F;- be an eigenvalue of g,y on Z;.
By irreducibility, the eigenvalues of o, on Z; are M fori=0,1,...,z— 1.
By Lemma 2.8.11, the inverses of these eigenvalues are the eigenvalues of
oy on Zj. We contend that these two sets are the same. Namely as o
is not semisimple, it cannot leave invariant both Z; and Z]. So without
loss Z;* # Z,, and we obtain that Z; and Z] are o, ~isomorphic by Jordan-
Holder. So the set of eigenvalues on Z; is closed under inversion, in particular
there is an i such that A=' = A\?. This gives A ~! = 1, s0 A € Fpi. We
obtain that z divides 2i < 2z, as F: = F,[A]. If ¢ = 0, then A = +£1, so oy
has order at most 2, and the claim clearly follows, as b = 1. If 4 > 0, then
z = 21, so the order of o, divides ¢?*> + 1, and the claim follows again from
(¢ + 1)p < 2¢*/%q < 2¢* = 24172,

We are left to look at the case p = 2. As the form is not degenerate, we
have necessarily v = wz even. We proceed similarly as above. Recall that
b > 1. We are done unless

2(¢* — 1) > ¢»*/2. (2.10)
From that we obtain
9t > qwa2—2
hence
9b=1 > guwz/2—
and

w—1> qv*?2, (2.11)
as 2! < w —1. If 2 > 2, then w — 1 > ¢*~2, hence either w = 3, ¢ = 2,
2z = 2; or w = 2. The first case gives 2°° < w —1 = 2, so b < 2, hence

ord(0) = 12 or < 6 < 2% = 2v/2.
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Thus we have z = 1 except possibly for w = 2. First assume w > 2, so
w > 4 is even. We obtain w < 6 from (2.11). Suppose w = 6. Then ¢ = 2
and b < 3, and we obtain a contradiction to (2.10). Next suppose w = 4.
Again ¢ = 2. From (2.10) we obtain 2° > 22, hence b > 3, a contradiction to
4< 1<y —-1=3.

Finally, suppose w = 2. Clearly b = 1. The argument from the last
paragraph in the case p > 2 shows that the critical case is when z is even
and ord (o) divides 2(¢*/? +1). Now

2(¢°? +1) = ¢" — ((¢°/* = 1)> = 3) < ¢* = ¢/
except for ¢ = 2, z = 2. O

Proposition 2.8.15. Let 0 € GL,(q) be an isometry with respect to a non-
degenerate skew-symmetric or symmetric bilinear form on Fy. Then

2¢n/2 if q 1s odd,
i(o) < qn/? if ¢ and ord(c) are odd,
ord(o
= ) eMlaDgln/2 < 2¢In/21 i g £ 2 is even,
(3e/2)2/% if g =2.

Proof. Choose a decomposition of V' into orthogonally indecomposable o—
invariant subspaces. The order of ¢ is the least common multiple of the
orders of the restriction of ¢ to these subspaces. Lemmas 2.8.10 and 2.8.14
give upper bounds for these orders.

In the following we use several times the trivial inequality

[ur/2] + [ua/2] + -+ 4 fuk /2] < [(ur +uz + -+ + wi) /2]

for integers u;.

First suppose that ¢ is odd. Let U be such a subspace of dimension u.
If U is o-irreducible, then ord(c|y) is at most ¢/*/? + 1, so the order is at
most (g2 +1)/2 < ¢/ if ord(c|y) is odd, and at most ¢l*/Z + 1 < 2¢lv/2
otherwise. The assertion follows if U = V. So suppose U < V. By induction,
the stated bound holds for the restriction of o to U*. Let @ = dim(U*'). If
the orders of the restriction of o to U and U~ are relatively prime, then at
least one of the orders is odd, and we obtain the claim by multiplying the
corresponding upper bounds. If these orders are not relatively prime, then
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the product of these orders divided by 2 is an upper bound for the order of
o, so the claim holds as well.

Now suppose that ¢ is even. Let W, be those subspaces from above
on which o acts irreducibly, and let W be the sum of these spaces. Set
w = dim(W), and let 1 < w; < wy < ... be the distinct dimensions of
the spaces W;. Note that if dim(W;) = 1, then the restriction of o to W; is
trivial. By Lemma 2.8.10, the w; are even, and the order of the restriction of
o to the associated space divides ¢“/2 + 1. Thus the order of o|y divides the
product of the ¢%/2 + 1. This product is less than e'/(¢=1¢*/2 by Lemma
2.8.13. If ¢ # 2, then apply the bounds in Lemma 2.8.14 to the summands
of W+ to get the claim. Finally suppose ¢ = 2. We are done except if
one of the summands @ of W+ has dimension 4 or 6, and o|g has order
6 or 12, respectively. The stated inequality then holds for W _L(Q). If there
are more such summands @' in W+, then they do contribute at most by a
factor 2 < 2M4m(@)/2 to the order of o. All other summands of dimension 7
contribute by a factor of at most 2["/?, so the claim follows. O

At a few places we need the following trivial

Lemma 2.8.16. Let 1 <1 < m and q > 2 be integers. Let ¢ be —1 or 1.
Then

(" +e) (g™ —¢)
¢ -1

> q2m—1—i'

Proof. Clearly ¢™~*—1 > e(q¢—1). Multiply by ¢"" to get >~ —¢g™~! >
e(@g™ — g™ 1), hence ¢®™ 17" — 1 > g(¢™ — ¢™'). But this inequality is
equivalent to the stated one. O

2.8.4 Classical Groups

As before denote by 1(S) and o(S) a lower bound for the degree of a faithful
permutation representation and an upper bound for the order of an element,
respectively. The minimal permutation degrees p(S) have been determined
by Cooperstein and Patton — we use the “corrected” list [36, Theorem 5.2.2]
which still contains a mistake (giving the wrong u for PQg (3)). We exclude
the group PSLy(5), as PSLy(5) = As, a case we already dealt with. Besides
that, the list [36, Theorem 5.2.2] contains a few duplications. Accordingly, we
drop PSp,(3) in view of PSp,(3) = PSU4(2) and Sp4(2)’ in view of Spy(2)" =
PSLy(9).
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We combine this information about minimal permutation degrees, in or-
der to show that we necessarily have S = PSL,,(¢), if a primitive almost
simple group with a classical minimal normal subgroup S contains an ele-
ment with only two cycles.

S symplectic
We rule out the symplectic groups, using the following

Lemma 2.8.17. Let S = PSp,,,(q) be the simple symplectic group, and o €
Aut(S). Then

4q™ if q is odd,

e/la=Ngm  if g # 2 is even, m > 3,
2e/a-Dg?  if g #£2 is even, m = 2,
(3e/2)2™  ifg=2, m > 3.

ord(o) <

In particular, ord(c) < 4¢™ if q # 2.

Proof. Let ¢ = p" with p a prime. If ¢ is odd, then Out(S) = Cy x C,, see
[36, Theorem 2.1.4, Prop. 2.4.4], where C, comes from a field automorphism.
Thus 0 has a preimage 7 in Spom(q) % Aut(F,). Let f be the order of
the associated field automorphism. By Lemma 2.8.6, 7/ is conjugate to an
element in the group Spgm(ql/ ), whose element orders are bound by 2™/
by Proposition 2.8.15. Thus 7 has order at most 2f¢™// < 2¢™, where we
used Lemma 2.8.7. The claim follows in the odd case.

If ¢ is even, then Out(S) = C, if m > 3. Argue as above. If m = 2,
then Out(S) is cyclic of order 2r, and the square of a generator is a field
automorphism, see [7, Chapter 12]. The claim follows as above. O

Now we rule out the symplectic groups in the order as they appear in
Table 2.1 on page 58.

m>2 q>3, (mq)#(2,3). Let 0 € Aut(S). The minimal faithful
permutation degree of S is (¢*™ —1)/(¢—1). As ¢ > 3, we get ord(c) < 4¢™
by the previous Lemma. So Lemma 2.8.3 gives

2m

g™ -1
qg—1

< 2ord(c) <2-4-q¢™.
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Note that the left hand side is bigger than ¢?™~1, so it follows that ¢™~! < 8.
Thus m =2 and ¢ < 7. But (7*—1)/(7—1) =400 > 392 =8-7%, 50 ¢ = 7 is
out. Thus ¢ =4 or 5. But ord(o) < 20 for ¢ = 4, and ord(c) < 30 for ¢ = 5,
see the atlas [8]. These improved bounds contradict the above inequality.

m > 3, q = 2. We get u(S) =2m71(2m —1) < 2(3¢/2)2™, hence 2™ —1 <
6e, so m = 3 or 4. If m = 4, then the atlas gives ord(c) < 30, contrary to
w(S) < 2ord(c). Thus m = 3. The atlas gives ord(c) < 15, and the next
biggest element order is 12. Also, there is a maximal subgroup of index
28, and the next smallest has index 36. So ord(c) = 15 and n = 28. But
15 = lem(k, 28 — k) has no solution, therefore o must have more than 2 cycles
in this representation.

S orthogonal in odd dimension

Now suppose that S = Qo,1+1(q).

Lemma 2.8.18. Let S = Qopmi1(q) be the simple orthogonal group with q
odd, m > 3, and o € Aut(S). Then

ord(c) < 2¢™.

Proof. Set V. = F2mt1 V. = V @ F,, and let £ be the standard bilinear

form on V. The algebraic group G := SL(V) N Isom(V, k) is connected.
Let o be in Aut(S). By the structure of the automorphism group of S (see
[36, Prop. 2.6.3]), we find a preimage 7 of ¢ in Isom(V, k) x Aut(F,). As
Isom(V, k) is an extension of G(IF,) by the scalar —1, we may assume that
7 € G(F;) x Aut(F,). Now use Lemma 2.8.6 together with Proposition 2.8.15
and Lemma 2.8.7 to get the conclusion. O

m > 3, q > 5 odd. We get a stronger inequality as in the previous case
S = PSp,,,(q), where we saw that there is no solution for m > 3.

m >3, q=3. Weget 3™(3™—1)/2<2-2-3™ hence 3™ <9, s0 m < 2,
a contradiction.
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S orthogonal of plus type

Lemma 2.8.19. Let S = P, (q) be the simple orthogonal group with Witt
defect 0, and o € Aut(S). Write ¢ = p’ for p a prime. Then

(4fg™ < 2g™F! if q is odd, m > 5,
8fq* < 4¢° if ¢ is odd, m = 4,
2fq™ < g™+l if ¢ # 2 1s even, m > 5,
ord(c) < A . :
(9/2)fq* < (9/4)¢® if ¢ # 2 is even, m = 4,
(3e/2)2™ ifg=2,m>5,
30 ifqg=2, m=4.

Proof. Let k be the bilinear form associated to S. First suppose that m > 5.
Assume ¢ odd first. Then 0%/ has a preimage in Isom(IF?]m, k), this follows
from the structure of the automorphism group of S, see [36, Theorem 2.1.4,
Table 2.1.D]. Now apply Proposition 2.8.15, and note that 2f < ¢. If ¢ is
even, then o/ already has a preimage in Isom(ngm, k), hence if ¢ # 2, then
ord(o) < fet/leNgm < 2f¢g™ < ¢™*! by Proposition 2.8.15, or ord(s) <
(3e/2)2™ if ¢ = 2.

Now suppose that m = 4. We have Out(PQy (q)) = 83 xC} if g is even,
and 2 S, xC; if ¢ is odd, see [36, p.38]. Thus if ¢ is odd, then either o*/ or
o*/ has a preimage in Isom(F2™, k), so ord(o) is at most 4 times the maximal
order of an element in Isom(]Fgm, k), and we use Proposition 2.8.15 again. If
q # 2 is even, then analogously ord(c) < 3fe!/(e=1g* < 3e!/3 fq* < (9/2) fq*.
If ¢ = 2, then use the atlas information [8]. O

m >4, q > 3. The case (m,q) = (4,3) obviously does not occur, see
Table 2.1 on page 58.
First suppose that m > 5. We get

(" — D" +1)

: < 2ord(0) < 4¢™ .
q J——

The left hand side is bigger than ¢*™ 2 by Lemma 2.8.16, so we obtain further
¢>™"2 < 4¢™*! hence ¢®> < ¢™ 2 < 4, a contradiction.

Next assume m = 4. First assume ¢ odd. Similarly as above we obtain
¢® < 16fq* < 8¢°. Note that if f = 1, then ¢ < 4, so ¢ = 3, a case already
dealt with above. Thus assume f > 2. We obtain ¢ < 8, so f = 2, hence
q® < 32, thus ¢ < 5, giving the contradiction f = 1.
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Now assume that ¢ # 2 is even. We obtain ¢® < 2 - (9/4)¢°, hence
q = 4. But ord(o) < (9/4)4° = 2304, whereas u(S) = 5525 > 2- 2304, a
contradiction.

m >4, q=2. If m =4, then ord(o) < 30, whereas pu(S) = 120, so this
case is out. Suppose m > 5. We obtain 2™ 1(2™ — 1) < 2 (3¢/2)2™, hence
2m < 6e+1=17.3..., thus m < 4, a contradiction.

S orthogonal of minus type

Lemma 2.8.20. Let S = PQ,,,(q) be the simple orthogonal group with Witt
defect 1, and o € Aut(S). Write ¢ = p’ for p a prime. Then

(4fq™ < 2¢™  if q is odd, m > 4,
2fq™ < ¢™ if q # 2 is even, m > 4,

ord(c) < < (3e/2)2™ if =2, m >4,
30 ifg=2m=4,
60 ifqg=2, m=2>5.

\

Proof. The proof follows exactly as in Lemma 2.8.19, except that for m = 4,
there is no exceptional (graph) automorphism of order 3. For ¢ = 2 and
m =4 or 5 use the atlas [8]. O

Now S = PQ,,.(q) for m > 4. From Lemma 2.8.16 we get u(S) > ¢*™ 2.
First suppose ¢ # 2. We obtain ¢*™ 2 < 2 -2¢™"!, hence ¢™ 3 < 4. Thus
m = 4 and ¢ = 3. But this contradicts the sharper bound ord(c) < 4-3* =
324. If ¢ = 2, then 2™ 2 < 2. (3¢/2)2™, hence 2™ 2 < 3e = 8.1..., s0
m < 5. Arrive at a contradiction using the upper bounds for ord(c) from
Lemma 2.8.20.

S unitary

Lemma 2.8.21. Suppose that o € GU,(q) acts irreducibly on F;. Then n
is odd, and ord(c) divides q" + 1. The order of the image of o in PGU,(q)
divides (¢" +1)/(¢ +1).

Proof. Let X be an eigenvalue of 0. Then Fp2[A] = Fpen. All the eigenvalues

of o are A7 with i = 1,--- ,n. Similarly as in the proof of Lemma 2.8.10,
there exists an index ¢ in the given range such that A" = A so
AT = (2.12)
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It follows that A" ~' =1, so A € F;"~%. Therefore n [ 2i — 1 < 2n, so
n = 2i — 1. The assertion about the order of ¢ follows from (2.12). By the
irreducibility, the element o is a subgroup of a Singer group of order ¢** — 1
on F,. The (unique) subgroup of order ¢+ 1 of this Singer group consists of
scalars, because ¢ + 1 divides ¢?> — 1. Also, ¢ + 1 divides ¢" + 1, so modulo
scalars o has order at most (¢" +1)/(¢ + 1). O

41—2

Lemma 2.8.22. Leto € GU,(q), and denote by @ the image of o in PGU,(q).
Let ¢ = p! with p prime. The following holds.

(a) If n =1, then ord(c) divides q + 1.
(b) If n =2, then ord(c) divides ¢* — 1 or p(q +1).

(c) If n = 3, then ord(c) divides ¢* + 1, ¢* — 1, or p"(q + 1) with r < 2
and r =1 if p > 2. Furthermore, ord(c) divides ¢*> —q+1, ¢> — 1 or
p(q+1). For p =2, there is the additional possibility ord(c) = 4.

(d) If n =4, then ord(c) divides ¢*+1, ¢* —q* +q—1, or p"(¢> — 1) where
r<2andr =114 p>2 Forp=3, there is the additional possibility
ord(c) = 9.

Proof. Denote by o,y the p’—part of 0. Set F' = F2, so GU,,(g) is the isometry
group of the unique hermitian from on F™.

The case n =1 is trivial.

Suppose that n = 2. By Lemma 2.8.21, ¢ is reducible on V' = F™. If o is
semisimple, then the eigenvalues of o are in F, so ord(c) | ¢ — 1. If o is not
semisimple, then o, is the centralizer of an element of order p, hence o, is
a scalar, and the claim follows again.

Now assume n = 3. If ¢ is irreducible, then apply Lemma 2.8.21. If ¢ is
orthogonally decomposable, then apply (a) and (b) to get that ord(o) divides
q®>—1or p(g+1). Next assume o reducible, but orthogonally indecomposable.
Choose a maximal orthogonal decomposition of V' in o,y—invariant subspaces.
By Lemma 2.8.11 and the notation from there, either V = U; LU, 1Us, or
V =U,1(Z;®&Z]). Assume the first possibility. By orthogonal irreducibility
of o, the U; are pairwise opy—isomorphic, thus o, is a scalar on V', with order
dividing ¢ + 1. Let p” be the order of the p—part of . Then p"~! < 2 by
Lemma 2.4.1, and we get the divisibilities as stated. If we have the latter
orthogonal decomposition, then U; must be o, —isomorphic to Z; or Zi, say
to Z;. On the other hand, Z; and Z| are not o,-isomorphic by Lemma
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2.8.11. We get that o, leaves invariant U; 1 Z; and Zj, thus the order of
op divides p. The order of o, divides ¢ + 1, because the restriction to U;
satisfies this, so this holds also for the restriction to Z;, and then also for the
restriction to Z] by Lemma 2.8.11.

Now assume n = 4. Let p® be the order of o,. First assume that o,
is orthogonally decomposable. From (a), (b), and (c), we get that ord(c,)
divides ¢> — 1 or ¢® + 1. If the latter occurs, then b = 0. If b > 2, then
b = 2, and either p = 3, and o3 acts indecomposably on V, or p = 2. In
the former case oy must be a scalar, so ord(g) divides 9. Next assume
that o, acts orthogonally indecomposably on V. Then V = Z; @ Z] with
dim(Z;) = 2. Let A € F,a be an eigenvalue on Z;. Then the other eigenvalue
is A\, and Lemma 2.8.11 tells us that the eigenvalues on Z] are \~? and
A7, Set m = ¢ — ¢ + ¢ — 1. Raising these 4 eigenvalues to the m—th
power gives equal values (use N = A), hence oy s a scalar. Also, o, =1,
because Z; and Z] are not op—isomorphic by Lemma 2.8.11. We get the
stated divisibilities. O

Lemma 2.8.23. Let ¢ = p/ > 3 for a prime p. Then each element in
Aut(PSU4(q)) has order at most max(2, f) - (¢ + 1).

Proof. Let 0 € GUy(q) x Gal(F,2/F,) be a preimage of a given element
o € Aut(PSUy(q)). Let r be smallest positive integer with 0" € GUy(q), so r
divides 2f. If r < 2f, then r < f, and " € PGU(4, ¢), so the claim follows
from ord(7) < ford(¢") and Lemma 2.8.22. Also, if f =1, we are obviously
done. Therefore we are concerned with r = 2f with f > 2.

By Lemma 2.8.6, we get that 0/ is conjugate to an element in GLy4(p),
and an upper bound for the element orders in the latter group is p?*, see
Proposition 2.8.9. Thus ord(s) < 2fp*. From f > 2 we obtain 2fp* <
f(®+1) < f(¢®+ 1), and we are done. O

Lemma 2.8.24. Let S = PSU,(q) be the simple unitary group with n > 3,
and o € Aut(S). Then

2q" if q 1s odd,
(3e/2)q™ in any case.

ord(o) < {

Proof. Write ¢ = p/ with p a prime. Then o has a preimage 7 in GU,(q) %
Gal(IF,2 /IF,). Under restricting the scalars to F,,, we obtain an embedding of
the latter group into Isom(IFIQ,f " k), where k is a symmetric non-degenerate
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[F,-bilinear form. Now apply the bounds in Proposition 2.8.15 to obtain the
claim. 0

We rule out the unitary groups in the order as they appear in the list 2.1
on page 58. So suppose that S = PSU,,(q).

m =3, q # 2,5. First suppose that f > 2, so ¢ > p. By Lemma
2.8.22 and the structure of the automorphism group of PSU,,(q) given in
[36, Prop. 2.3.5] we get ord(c) < 2f(¢®> —1). But u(S) = ¢* + 1, so
@3+1 < 2-2f(¢?—1), hence ¢>—q+1 < 4f(g—1). This shows ¢*>—q < 4f(¢g—1),
so 3/ < q < 4f, contrary to f > 2.

Next suppose f = 1, so ¢ = p. We obtain ord(c) < 2p(p + 1). Thus
p>+1<4dp(p+1),s0p?>—p+ 1< 4p, therefore p — 1 < 4, so p = 3. Check
the atlas [8] to see that ord(c) < 12, so this case is out by 3> +1 > 2-12.

m = 3, g =5. Then Out(S) = S3 and o(Aut(S)) = 30. Thus the degree
is at most 60. But the only representation of S with degree < 60 has degree
50, see [8]. Now o(S) = 10, s0 A > S. As 5.3 does not have a permutation
representation of degree 50, we have A = S.2. However, 0(S.2) = 20, and
this case is out too.

m = 4. Suppose ¢ # 2 for the moment. First suppose f > 2. Then
ord(c) < f(¢* + 1) by Lemma 2.8.23. We obtain (g + 1)(¢> + 1) = u(S) <
2f(¢®+1), hence ¢+1 < 2f. But ¢ > 2/ > 2f, so there is no solution. Next
suppose f =1, so ¢ = p. We obtain p+ 1 < 4, so p = 3. However, the max-
imal element order in Aut(PSU4(3)) is 28, see the atlas [8], a contradiction.
Similarly, if ¢ = 2, then o(Aut(PSU4(2))) = 12, which is too small.

6 | m, g = 2. Use Lemma 2.8.24 to get 2™ (2™ — 1)/3 < 2(3e/2)2™ =
6e2™ ! hence 2™ — 1 < 18e = 48.9..., so m < 5, a contradiction.

m > 5, (m,q) # (6m’,2). From Lemma 2.8.16 we obtain u(S) > ¢*™3.
On the other hand, ord(c) < (3e¢/2)¢™ by Lemma 2.8.24, so ¢*> < ¢™ 3 <
3e =8.1..., thus ¢ = 2 and m = 5. (Also m = 6 would fulfill the inequal-
ity, but this is excluded here.) However, in this case p(S) = 165, whereas
o(Aut(S)) = 24, see the atlas [8], a contradiction.

2.8.5 Projective Special Linear Groups

Now we assume that S = PSL,(¢), and show that except for some small
cases, only the expected elements can act with at most 2 cycles in the natural
representation.
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In this section, we use results by Tiep and Zalesskii [70, Section 9] on the
three smallest faithful permutation degrees for the simple groups PSL,(q).
Unfortunately, their result is mis-stated. Apparently they mean to give the
degrees of the three smallest faithful primitive permutation representations.
In order to make use of their result, we need a little preparation.

Lemma 2.8.25. Let S be a simple non—abelian group, and n = u(S) be the
degree of the smallest faithful permutation representation. Let A be a group
between S and Aut(S). If A has a primitive permutation representation on
Q such that S is imprimitive on 2, then || > 3n.

Proof. Suppose that S acts imprimitively on 2, and assume that |Q| < 3n.
Let A be a non—trivial block for S, and M be a setwise stabilizer in S of
this block. Primitivity of A forces transitivity of S on €2, in particular S is
transitive on the block system containing A. As there must be at least n
blocks by assumption,

n|A| < 9| < 3n,

hence |A| < 3, so |A| = 2. Let A; be the stabilizer of a point in A. Set
S; = SN Aj, a point-stabilizer in S. Clearly [M : Si] = |A] = 2, so 5] is
normal in M. Also, S; is normal in A;, and maximality of A; in A forces
A; = N4(S1). So M < A, a contradiction. O

Lemma 2.8.26. Let S = PSL,(q) with (n,q) # (4,2), (2,2), (2,3), (2,4),
(2,5), (2,7), (2,9), or (2,11). Let A be a group with S < A < Aut(S).
Suppose that A acts primitively, and there is o € A with at most two cycles
in this action. Then S is primitive as well.

Proof. In these cases the natural action of S on the p = (¢" — 1)/(¢ — 1)
lines of Iy is the one of smallest possible degree. Let N be the degree of the
action of A. Suppose that S is imprimitive. From Lemma 2.8.25 we obtain
N > 3u. If 0 € PI'L,(q), then ord(o) < u by Proposition 2.8.9, contrary to
Lemma 2.8.3. Thus o involves a graph automorphism of PSL,(¢), hence also
n > 3.

As 0? € PI'L,(gq), we have ord(c) < 2u, hence N < 4u. Let A; be a
point—stabilizer in A, and set S; = A; N S. Let M be a maximal subgroup
of S containing S;. Then [S : M| < [S : 51]/2 < 2y, so it follows easily
from [70, Section 9] that M fixes a line (or hyperplane) with respect to
the natural action, except possibly for (n,q) = (3,2). Exclude this single
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exception for a moment. As A = A;S by transitivity of S, also A; involves
a graph automorphism 7. As A; normalizes S, and the action of 7 on S
interchanges point—stabilizers with hyperplane—stabilizers, we get that there
is a hyperplane H < I} and a line L < Fy, such that S; fixes H and L.
Clearly, S acts transitively on the ¢" !(¢" — 1)/(¢ — 1) non-incident line-
hyperplane pairs, and also transitively on the (¢" — 1)(¢" ! —1)/(q — 1)?
incident line-hyperplane pairs. The latter size is smaller than the former, so
N > (¢"—1)(¢"'-1)/(g—1)* = (¢"'—1)/(g—1)p. From N < 2ord(c) < 4
we obtain 14+ ¢+ ---+ ¢ 2 < 4. Hence n = 3 and ¢ = 3 or 2. However,
for ¢ = 3 we have ord(c) < 13 by [8], contrary to N > 52. If ¢ = 2, then
Aut(S) =2 PGLy(7), so ord(c) < 8, but N > 21, a contradiction.

It remains to check the case (n,q) = (3,2). Then Aut(S) = PGLy(7),
so ord(o) < 8, hence N < 16. But this contradicts the above estimation
N > 3p = 21. O

Lemma 2.8.27. Let S = PSL,(q) with (n,q) # (4,2), (2,2), (2,3), (2,4),
(2,5), (2,7), (2,9), (2,11) and S < A < Aut(S). Assume that A acts
primitively on 2. Suppose that o € A has at most 2 cycles on §). Then either
A < PT'Lyn(q) and A acts naturally on the lines of F, or (n,q) = (3,2), and
A < Aut(PSL3(2)) = PGLy(7) acts naturally of degree 8.

Proof. Let N = || be the permutation degree of A, and suppose that we do
not have the natural action of S = PSL,(¢) on the points of the projective
space.
As 0? € PI'L,(q), we get ord(o) < 2(¢" —1)/(¢ — 1) by Proposition 2.8.9.
S is primitive by the previous lemma, so we can use the results by Tiep
and Zalesskii [70, Section 9] on the three smallest primitive permutation
degrees for the simple groups PSL,(g), see the comment before Lemma 2.8.25.
First suppose that n > 4, and if n = 4, then ¢ # 2. Then

("~ (g 1)
N2 @ -

(This second smallest primitive representation is given by the action on the
2-spaces in F7.) Now use N < 2ord(o) to obtain ¢" ' — 1 < 4(¢* — 1).
Son =4 and ¢ = 3. (Note that (n,q) = (4,2) is already excluded from
the statement of the lemma.) But o(Aut(PSL4(3))) = 40 by the atlas [8],
whereas N = 130 > 2 - 40, so this case is out.

Next assume n = 3. Using [70, Section 9], one easily verifies that N >
q¢> — 1 except for ¢ = 4 and 2. Exclude ¢ = 2 and 4 for a moment. So
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> —1<4(¢>*—-1)/(¢—1), hence ¢ = 3 or 5. But for ¢ = 5, we actually have
N > 5%(5% — 1), but ord(c) < 2(5% — 1)/(5 — 1), clearly a contradiction. If
g = 3, then N > 144, contrary to ord(c) < 2(3* —1)/(3 — 1) = 26. Now
suppose ¢ = 4. The atlas [8] gives ord(o) < 21, whereas N > 56 > 2-21
by [70, Section 9], a contradiction. If ¢ = 2, and we do not have the natural
action, then necessarily N = 8, which corresponds to the natural action of
PGLy(7) = Aut(PSL3(2)).

Finally we have to look at n = 2. As A < PT'Ly(g) now, we have ord(o) <
(@®-1/(g-1)=q¢+1

We go through the cases in [70, Section 9]. If ¢ > 4 is an even square,
then 2(¢ +1) > N > ,/q(q + 1), hence ¢ < 4, a contradiction. If ¢ is an
odd square # 9, 49, then 2(¢ + 1) > N > ,/q(¢ + 1)/2, hence ¢ < 16, a
contradiction. If ¢ € {19,29,31,41}, then 2(¢ + 1) > N > ¢(¢* — 1)/120,
so ¢ < 16, a contradiction. If ¢ = 17 or ¢ = 49, then N = 102 or 175,
respectively, so these cases do not occur. If ¢ is not among the cases treated
already (and # 7, 9, and 11,) then N > q(q —1)/2, 50 q(¢ — 1) < 4(q + 1),
hence ¢ < 5, a contradiction. O

Lemma 2.8.28. Let S = PSLy(q) with ¢ =9 or 11 and S < A < Aut(S).
Assume that A acts primitively on §2, and that there exists o € A with at
most 2 cycles on Q. Then either A < PI'Ly(q) and A acts naturally on the
lines of Ty, or ¢ =9, A < 8 < Aut(PSLy(9)) acting naturally on 6 points,
orq=11, |Q] =11, A = PSLy(11), and o is an 11-cycle.

Proof. Suppose ¢ = 9. We have S = Ag, and the maximal subgroups of S
have index 6, 10, and 15, respectively. Of course, the degree 6 occurs. Degree
10 corresponds to the natural action of S. The degree 15 corresponds to Ag
acting on 2-sets. Then A < Sg, and one verifies easily that each element
has > 3 cycles. This settles the case that S is primitive. If S is imprimitive,
then N > 3.6 = 18 by Lemma 2.8.25, but also N < 2ord(c) < 20. As A
contains no element of order 9, we actually have N = 20. Hence ord(o) = 10,
so PGLy(9) < A. But neither PGL2(9) nor PT'Ly(9) act primitively on 20
points, e.g. by the argument in the proof of Lemma 2.8.25.

Next suppose ¢ = 11. As ord(o) < 12, we have N < 24, but 24 < 33 =
3 - u(S), so S is primitive. The maximal subgroups of S of index < 24 have
index 11 and 12, and correspond to the actions covered by the claim. O

Lemma 2.8.29. Let PT'L,(q) act naturally on the lines of ¥} for n > 2.
Suppose that an element o € PI'L,(q) \ PGL,(q) has at most 2 cycles. Then

(n,q) = (3,4), (2,4), (2,8), or (2,9).

o1



CHAPTER 2. PRIMITIVE GROUPS WITH A TWO-CYCLES
ELEMENT

Proof. Let vg € GL,(g) % Aut(F,) be a preimage of such a o, with v €
Aut(F,) and g € GL,(g). Then

1¢"—1

> — .
ord(79) > 3 |

Let f > 2 be the order 7. By Lemma 2.8.6, (7g)/ is conjugate to an element
in GL,(¢"/f), and the orders of elements in this latter group are at most
¢"/f — 1 by Proposition 2.8.9. Thus

1¢"—1

f(g"! —1) > ord(yg) > = : (2.13)
2qg—1
This gives
il Sy
2fa>2f(a=1) 2 Sy >,
hence
2f > q"‘”/f_l.
Now use 2f < 2f and ¢ > 2/ to obtain
of > gnf=n=1,
hence
2 -2
ne-2 4 of72 4 (2.14)
—1 —1
son <3.

First suppose n = 3. Then (2.14) shows f < 3, hence f = 2. Set r = ¢'/2.
Then (2.13) gives 2(r® — 1) > 155=1 50 4(r> — 1) > 73 4 1, hence r < 4. One
verifies easily that » = 3 is not possible, because the maximal order of an

element in PI'L3(9) \ PGL3(9) is 26, see e.g. [8].

Next assume n = 2. Again set 7 = ¢'/f/ > 2. Let h be an element in
GLy(r) < GLy(q) which is conjugate (in GLy(F,)) to (vg)/. Denote by h the
image of h in PGLy(¢). There are three possibilities for A: If h is irreducible

on 2, then ord(h) divides r* —1, so ord(h) divides (r*—1)/ ged(r*—1,¢—1).

But r — 1 divides the denominator, so ord(h) divides r + 1. Next assume that

h is reducible. If h is semisimple, then clearly ord(h)|ord(h)|r—1. If however
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h has a unipotent part, then this p—part has order p, and its centralizer is

the group of scalar matrices. Hence in this case, ord(h) = p <.

We have seen that ord(h) < r + 1 in any case, hence ord(c) < f(r + 1).
We obtain

g+1 rf+1
1) > =
hence
F41
r’ 4+ <af.
r+1

The left hand side is monotonously increasing in r. For r = 2 we obtain
2/ +1 < 6f, hence f < 4. For f = 3 and 4 there are only the solutions r = 2.
If r > 2 then f =2 and » = 3 or 4. In order to obtain the claim, we have
to exclude the possibility ¢ = 7/ = 16. The previous consideration shows
that each element in PI'Ly(16) \ PGL2(16) has order at most 12. But then
we clearly cannot have at most 2 cycles in a representation of odd degree
17. U

Lemma 2.8.30. Let 2 < n € N. Suppose that 0 € PGL,(q) has at most 2
cycles in the action on the lines of ¥y . Then one of the following holds:

(a) q is a prime, n = 2, and o has order q.
(b) o is a Singer cycle or the square of a Singer cycle.

Proof. For a subset S of Fy denote by P(S) the “projectivization” of S,
namely the set of 1-dimensional spaces through the non—zero elements of
S. Denote by 6 € GLy(g) a preimage of 0. If & is irreducible on Fy, then
Schur’s Lemma shows that (b) holds. Thus assume that & is reducible, and let
0 <U < Iy be a g-irreducible subspace. The assumption shows that <o>
permutes transitively the elements in P(U), as well as those of P(F; \ U).
The transitivity of this latter action shows

q" divides ord(¢), where u = dim(U). (2.15)

Denote by 6, and 6,y the p—part and p'-part of &, respectively. Let W be
a Op—invariant complement to U in F,. As & is transitive on P(U) and
P(F; /U), we have in particular that & is irreducible on the quotient space
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e /U, so &, is trivial on this quotient, hence 6, is irreducible on W. From
(2.15) we get that &, is not trivial, in particular W is not &,-invariant.
Then we see from Jordan—-Holder that U and W are &—isomorphic, so 6, €
GLy(¢"). Thus ord(6,) = p. Combine this with (2.15) to get n = 2u = 2,
and ¢ = p. Finally, 6,y centralizes J,, so must be a scalar, that is ¢ has order
- O

2.8.6 Exceptional Groups of Lie Type

Here we rule out the case that S is an exceptional group of Lie type. Table
2.2 on page 59 contains the exceptional group of Lie type S, a lower bound
w(S) for the degree of a non-trivial transitive faithful permutation represen-
tation, an upper bound o(S) for the orders of elements, the order of the outer
automorphism group, and finally restricting condition on ¢. In the list ¢ = p/
for a prime f.

The lower bound for u(S) has been computed as follows. If S has a
permutation representation of degree m, and F' is any field, then the permu-
tation module of S over F' has a submodule of dimension m — 1. Som — 1
is at least the dimension of the lowest—dimensional projective representation
of S in characteristic different from the defining characteristic. But these
minimal dimensions have been determined by Landazuri and Seitz in [43].
We use the corrected list [36, Theorem 5.3.9]. Note that if S does not have
a doubly transitive representation, then the (m — 1)-dimensional module is
reducible, so one summand has dimension at most (m —1)/2, see [25, 4.3.4].
This is the case for all S except for ?By(g) and ?Gy(q). So u(S) is then at
least 1 plus 2 times the minimal dimension of a representation of S.

The upper bound for o(S) has been obtained as follows. Each element of
S is the product of a p—element with a commuting p'—element, so we multiply
upper bounds for each. If £ is the Lie rank of S, then the order of p’—elements
is at most (g + 1)*, see [49, 1.3A]. The order of a p-element g is bounded as
follows. Suppose S < PGL,,(F) for a field F' of characteristic p. Then the
order of g is a p-power at most p(w — 1), see Lemma 2.4.1. Small values
w with an embedding as above are classically known, see [36, Prop. 5.4.13].
However, for the Suzuki groups 2Bs(q) we used [32, XI, §3] to determine p
and o. To determine y for Ga(q) and ®D,(q) we use the papers by Kleidman
[34] and [35] respectively.

Now assume that S < A < Aut(S) and o € A has at most two cycles in
a transitive action of A. Then u(S) < 20(A) < 2|0ut(S)|o(S). Comparing

o4



2.8. ALMOST SIMPLE ACTION

with the information in the Table 2.2 on page 59 rules out all but a few little
cases, which require extra data obtained from the atlas [8].

S =2By(q). We get 1 +¢*> < 2f(qg++2q¢+1). As g > 8, we have
V2¢+1 < 2¢. So we get ¢*> < 1+¢*> < 2f(q+ 2¢), hence 2/ < 22 f. This
implies f = 3. But o(Aut(®B2(8))) = 15 (see the atlas [8]), contrary to
w(*Bz(8)) = 65 > 2 - 15.

S =2Ga(q). Weget 1+q(g—1) < 2f-9(g+1). Now g+ 1 < 2g,
which gives 3/ = ¢ < £ f 41, hence f = 3. But pu(°G(27)) = 19684, see [8],
whereas 0(*G5(27)) = 37, so this case is clearly out.

S = G2(q). Obviously ¢ > 5. First assume that ¢ is odd. Bound (¢® —
1)/(¢ — 1) from below by ¢°, and g + 1 from above by 6¢q/5. We then obtain
q® < 2-2f-6p(qg+1)? < 24¢(6q/5)?, hence p?/ < 864f /25, which gives g = 5.
But then Out(S) has order 1, and when we use the estimations in the table,
we get a contradiction. The case p = 2 and f > 3 also does not occur by a
similar calculation.

S =3Dy4(q). We get (¢g+ 1)(¢® +¢* +1)/2 < 2-3f-8p(q+ 1)%2. One
quickly checks that this holds only for ¢ = 2. But u(®D4(2)) = 819, whereas
0(®D4(2)) = 28 (see [8]), so this case does not occur.

S =2F4(2)". This clearly does not occur.

S =2F4(q). One gets 1+ ¢*\/2¢(q — 1) < 2f - 32(¢ + 1), and one easily
checks that this inequality has no solutions.

S = F4(q). The case ¢ = 2 does not occur. We have 1 + 2¢%(¢> — 1) <
2(2,p)f - 25p(q + 1)*, which implies that ¢ = 3 or 4. However, Theorem
[36, 5.3.9] for even ¢ shows that the minimal degree of a 2'-representation
of Fy(4) is 1548288, so p(S) > 3096577. But this violates the estimation
o(F4(4)) < 31250. So ¢ = 3. The maximal order of a 3'—element is < 73, see
[6, page 316]. Furthermore, the 3—order is at most 27. Thus o(S) < 1971.
But p(S) > 11665, a contradiction.

S =2Eg(q). We get quickly ¢ = 2. But o(*Fg(2)) = 35, which is much
too small compared to u(?Fg(2)) = 3073.

S = Eg(q). We quickly get that ¢ = 2, 3, or 4. The p/—part is bounded
by 91, 949, and 5061, respectively (again by [6, page 316]), and the p—part is
bounded by 32, 27, and 32, respectively. So o(S) is at most 2912, 25623, and
161952, respectively. If we compare this with the estimation for p(S), then
only ¢ = 2 survives. We get u(S) < 2-2-2912 = 11648. However, E(2)
contains Fy(2), and u(Fs(2)) > p(Fy(2)) = 69615 ([8]), a contradiction.

S = E+(q). We get ¢ = 2. Use [6, page 316] to obtain o(S) < 171-64 =
10944. But from the table we have p(S) > 196609, which is clearly too big.
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S = Eg(q) gives also no examples.

2.8.7 Proof of Theorem 2.8.1

Now we are ready to prove Theorem 2.8.1, by collecting the information
achieved in the last sections. Thus suppose that A acts primitively, § < A <
Aut(S) for a non—abelian simple group S, and that A contains an element o
which has exactly 2 cycles.

If S is sporadic, then Section 2.8.2 gives the possibilities. This is the
easiest case, as the result can be directly read off from the atlas information
[8]. Only the Mathieu groups My1, M1a, Mgy, and My, give rise to examples,
listed as (g), (h), (i), and (j) in Theorem 2.8.1, respectively.

Section 2.8.1 treats the case that S = A,, the alternating group with
n > 5. The case n = 6 has been excluded there, and postponed to the
analysis of the linear groups, in view of Ag = PSL3(9). The only examples
coming not from the natural action of S are as follows: S = Aj acting on
the 2-sets of {1,2,3,4,5}, hence of degree 10 (case (b)), or S = Aj acting
on 6 points (case (c) for p = 5, note that A; = PSLy(5)).

By Section 2.8.6, S cannot be of exceptional Lie type.

In Section 2.8.3 it is shown that if S is a classical group, then S is iso-
morphic to some PSL,(q).

This is dealt with in Section 2.8.5. We can exclude a couple of small
pairs (n, ¢) in view of exceptional isomorphisms, see [36, Prop. 2.9.1]. As S is
simple, (n,q) # (2,2), (2,3). Also, (n,q) # (2,4), (2,5), as S = As has been
dealt with already. Also (n,q) # (4,2), as Ag had been ruled out in Section
2.8.1. Furthermore, we assume (n, q) # (2,7) in view of PSLy(7) = PSL3(2).

Suppose that ¢ # 9, or 11, if n = 2. Then A < PI'L,(¢q) acting naturally
on the projective space, or (n,q) = (3,2), and we have the natural action
of PSLy(7) = PSL3(2) of degree 8, see Lemma 2.8.27. Lemma 2.8.28 shows
that for (n,q) = (2,9) the action is either the natural one, or the natural one
of Ag = PSL4(9), and for (n,q) = (2,11), only the natural action is possible.

In conclusion, we are left to look at the natural action of PSL,(q) <
A < PI'L,(q), and to determine the possibilities for o. By Lemma 2.8.29,
we have actually o € PGL,(q), except possibly for (n,q) = (3,4), (2,8), or
(2,9). The case (n,q) = (3,4) accounts for (f) in Theorem 2.8.1. One easily
verifies that PI'Ly(8) does not contain an element with just 2 cycles (but it
does contain 9—cycles not contained in PGLy(8)!). Similarly, if an element in
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PI'Ly(9) \ PGL2(9) has only 2 cycles, then ¢ € Mg, and the cycle lengths
are 2 and 10. This gives case (e) of Theorem 2.8.1.

So in addition to the assumption that A < PI'L,(q) acts naturally, we
may finally assume o € PGL,(¢). Lemma 2.8.30 finishes this case: Either
q is a prime, n = 2, ord(o) = ¢ (so ¢ has cycle lengths 1 and ¢, case (c) of
Theorem 2.8.1), or o is the square of a Singer cycle (case (d) of Theorem
2.8.1).

By the classification theorem of the finite simple groups, we have covered
all possibilities of S.
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2.9 Tables on Minimal Permutation Degrees,

Maximal Element Orders, etc.

Table 2.1: Classical Groups

S ©(S) [Out(S)| m,q
PSLm(Q) (qm - 1)/(q - 1) 2(m, q— l)fa m Z 3 (m, q) # (2’ 5);
(m’q_l)fvm:2 ( 57)5(259)5
(2,11),(4,2)
PSL2(7) 7 2
PSL»(9) 6 1
PSL(11) 11 2
PSL4(2) = Ag 8 2
PSpam(q) (@™ -1)/(g—1) (2,¢—1)f, m>3 m>2,q>3,
2f, m=2 (m,q) # (2,3)
Sp2m (2) 2m=T(2™ _1) 1 m>3
Qom+1(q) (@™ -1)/(g-1) 2f m >3,
g > 5 odd
Q2m+1(3) 3™ (3™ — 1)/2 2 m>3
PQ3 (q) @ =D T+ 1)/@-1) | 2(4,¢"—1)f,m#4| m>4,¢>3
6(45 qm_l)fam:4 (ma q) # (45 3)
PQY (2) 2m=1(2m _1) 2,m # 4 m >4
6,m =4
PQJ (3) 1080 24
P, (9) (" + (g™ -1)/(g—-1) 2(4,q™ + 1)f m>4
PSUs(q) ¢ +1 23, g+ 1)f q7#2,5
PSU3(5) 50 6
PSU4(q) (a+1)(¢® +1) 2(4,q+1)f
PSU,.(2) 2m=1(2m —1)/3 6 6| m
(ms Q) 7& (Gmla 2)
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2.9. TABLES ON MINIMAL PERMUTATION DEGREES, MAXIMAL

ELEMENT ORDERS, ETC.

Table 2.2: Exceptional Groups

S u(S) > o(S) < [Out(S)] q
*Bs(q) 1+¢? g++2q+1 I g=22F1>72
2G2((Q)) 1+4q(g—1) 9g+1) JQ” qg=3"">3
Go(3 351 13
G2(4) 416 21 2
Ga(q) (¢®=1)/(¢—1) 8(q+1)? f g > 8 even
Ga(q) (¢®=1)/(¢-1) 6p(q +1)° <2f q>5 odd
21?4((5))1 (¢+1)(¢* + ({;(;B 1)/(2,4—1) 7p(q1;_r 1)? 32f
Flg) | 142l 1) 202 | f g=2 50
Fy(2) 69615 30 2
Fi(q) 14+2¢°(¢* — 1) 25p(g+1)* | (2,p)f q>3
2Fs(q) 1+2¢°(¢* - 1) 26p(q+1)* | 2(3,¢+1)f
Es(q) 14+2¢°(¢* - 1) 26p(q+1)° [2(3,¢—1)f
Er(q) 1+2¢"(¢* - 1) 55p(q+1)" | (2,9 —1)f
Es(q) 1+2¢"(¢* - 1) 247p(q+1)° f
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Table 2.3: Sporadic Groups
Group S | Orders of Indices of ma- | |Out(S)|
elements ximal subgroups
My, 11, 8, 6, <5 11, 12, > 55 1
M 11, 10, 8, 6, <5 12, > 66 2
Moo 11, 8, 7, 6, <5 22, > 77 2
Mys 23, 15, 14, <11 23, > 253 1
My, 23, 21, 15, 14, 12, < 11 | 24, > 276 1
Ji <19 > 266 1
Ja <15 > 100 2
Js3 <19 > 6156 2
Ja <66 > 173067389 1
HS <20 > 100 2
Suz <24 > 1782 2
McL <30 > 275 2
Ru <29 > 4060 1
He <28 > 2058 2
Ly <67 > 8835156 1
O'N <31 > 122760 2
Coq <60 > 98280 1
Coq <30 > 2300 1
Cos <60 > 276 1
Figg <30 > 3510 2
Figs <60 > 31671 1
Fi,, <60 > 8672* 2
HN <40 > 1140000 2
Th <39 > 143127000 1
B <70 > 4372* 1
M <119 > 196883* 1
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Chapter 3

Genus 0 Systems

3.1 Branch Cycle Descriptions

3.1.1 Algebraic and Topological Description

Let k be a subfield of the complex numbers C, ¢t be a transcendental over
C, and L/k(t) be a finite Galois extension with groups G. We assume that
L/k(t) is regular, that means k is algebraically closed in L. Let p1,po, ..., p,
be the places of k(t) which are ramified in L. Then, by a consequence of
Riemann’s Existence Theorem (see [53], [71]), we can choose places PB; of L
lying above p;, © = 1,2,...,r, and elements o; € G such that o; is a generator
of the inertia group of ‘J3;, so that the following holds:

The 0;,1=1,2,...,r generate G, and 0105 ...0, = 1.
We call the tuple (01,09, ...,0,) a branch cycle description of the extension
L/k(t).

Now let E be a field between L and k(t), and consider G as a permutation
group on the conjugates of a primitive element of E/k(t). Set n := [E : k(t)].
For o € G let ind(c) be n minus the number of cycles of 0. We call ind(o)
the indezr of 0. This notion obviously applies to any permutation group of
finite degree.

Let gg be the genus of the field E. The Riemann-Hurwitz genus formula
gives

2(n—1+gp) =Y _ind(oy). (3.1)

=1
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We will frequently use this relation for the case that F is a rational field,
so that in particular gz = 0, and will call the corresponding equation genus
0 relation, and the tuple (o1,09,...,0,) a genus 0 system.

The process of constructing a branch cycle description from the extension
L/k(t) can be reverted to some extent. Namely let G be any finite group,
generated by oy,09,...,0,, such that o109...0, = 1. Then there exists a
finite extension k£/Q, and a regular Galois extension L/k(t), such that the
o; arise exactly as described above. This again follows from (the difficult
direction of) Riemann’s Existence Theorem. Modern references are [53] and
[71], where the latter one contains a self-contained treatment.

For explicit computations and a conceptual understanding of branch cycle

descriptions, the topological interpretation of the o; is indispensable. Also
CL/C(t) has Galois group G. Again let E be a field between k(7)) and L.
There is a composition of ramified coverings of Riemann surfaces X — X -
P!(C), such that the natural inclusion of the fields of meromorphic functions
C(t) = M(P*(C)) C M(X) C M(X) is just the extension C(t) C CE C CL.
If we identify the places of C(¢) with the elements in P'(C) in the natural
way, then the branch points of X — P'(C) are exactly the places of C(t)
ramified in CL. Choose a point p, € P'(C) away from the branch points
i, and choose a standard set of generators vy, 7, ..., 7, of the fundamental
group T' of P'(C) \ {p1,...,p,} with base point py, where 7; comes from a
path starting and ending in py, winding clockwise around p; just once and

not around any other branch point, see the diagram.
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The ~; generate I with the single relation vy;7vs...7, = 1. Clearly I' acts
on the fiber 771(pg). The induced action gives the group G, and the images
of the ; are the elements o; as above. Furthermore, the cycle lengths of o;
on the fiber 771(py) are the multiplicities of the elements in the fiber 71 (p;),
and these cycle lengths are the same as for the corresponding action on the
conjugates of a primitive element of E/k(t).

For more details about this connection we refer again to [53] and [71].

3.1.2 Branch Cycle Descriptions in Permutation Groups

Let G be a transitive permutation group of degree n, and £ := (04, 09, ..., 0})
be a generating system with oi05...0, = 1. For ¢ € G define the index
ind(o) as above. Let the number g¢ be given by

T

2(n—1+g¢) = Zind(oi).

i=1
The topological interpretation from above of the o; as coming from a suitable
cover of Riemann surfaces shows that g¢ is a non—negative integer, because
it is the genus of a Riemann surface. This topological application in a purely
group theoretic context was first made by Ree, see [59]. Later, Feit, Lyndon,
and Scott gave an elementary group theoretic argument of this observation,
see [18].

In this chapter we will determine such systems & for g¢ = 0 in specific
groups G. According to the previous section, we will call such systems genus
0 systems. If we look for o; in a fixed conjugacy class C;, then it does
not matter in which way we order the classes, for if o; and 0,1 are two
consecutive elements in £, then we may replace these elements by o;,; and
o]t respectively.

The strategy of finding such genus 0 systems in G (or proving that there
are none) depends very much on the specific situation. For many small
groups, we simply check using a program written in GAP [61]. For bigger
groups, especially certain sporadic groups, we can use the character tables in

the atlas [8]. Here, and at other places, the following easy observation (see
[54, 2.4]) is useful.

Lemma 3.1.1. Let o € G, where G is a permutation group of degree n, then

ind(o) =n — = Z X(Uk)w(or(z(a)),

O’I"d(O') k|ord(o)
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where x(7) is the number of fized points of T € G, and ¢ is the Euler ¢-
function.

3.2 Some General Lemmas about Genus 0 Sys-
tems

Lemma 3.2.1. Let (01,09,...,0,) be a genus 0 system of a transitive per-
mutation group G. Suppose that all cycle lengths of o1 and oy are divisible
by d > 1. Then G admits a block system of d blocks, which are permuted
cyclically.

Proof. Let n be the degree of G. Let X — P!(C) be a connected cover
of the Riemann sphere, such that (o1, 09,...,0,) is the associated branch
cycle description. Without loss of generality let 0 and oo be branch points
corresponding to o1 and o9, respectively. As our tuple is a genus 0 system,
X has genus 0, thus X = P'(C) and the cover is given by a rational function
f(X). We may assume (by a linear fractional change) that oo is not mapped
to 0 or oo. Let o; be the elements in f~'(0), and denote the multiplicity of
a; my m;. Similarly, let §; have multiplicity n; in the fiber f~!(oco). Thus,
up to a constant factor, we have

[I(X — o)™
[I(X = i)
As the m; and n; are the cycle lengths of oy and o, respectively, we get

f(X) = g(X)% where g(X) € C(X) is a rational function. From that the
claim follows. O

f(X) =

Remark. The completely elementary nature of the lemma makes it desirable
to have a proof which does not rely on Riemann’s existence theorem. We
sketch an elementary argument, and leave it to the reader to fill in the details:
First note that if the claimed assertion about the permutation action holds
for a group containing G (and acting on the same set), then it holds for G as
well. For 7 > 2 write 0; as a minimal product of transpositions, and replace
the element o; by the tuple of these transpositions. This preserves the genus
0 condition. Also, the product of a k—cycle with a disjoint [—cycle with a
transposition which switches a point of the k—cycle with one of the [—cycle
is a (k + l)—cycle. This way, we can assume that all cycle lengths of oy and

64



3.2. SOME GENERAL LEMMAS ABOUT GENUS 0 SYSTEMS

o9 are d, at the cost of extra transpositions, but still preserving the genus
0 property. Write n = md. Clearly, there are m — 1 transpositions in our
system, such that they, together with o;, generate a transitive group. Let
Ti,.-.,Tm_1 be these transpositions. As we have a genus 0 system, the total
number of transpositions is 2(m — 1). Using braiding we get an equation of
the form

! __! / .
O-ITI P Tm_l == 0-27-1 .« Tm—l . p,

where o is conjugate to o;', and the 7] are transpositions. As ind(zy) <
ind(z)+ind(y) and (01,71, -, Tm_1, 0" ') is a genus > 0 system of a transitive
subgroup of G, we obtain it must be a genus 0 system, and ind(p) = n — 1.
Thus p is an n—cycle. Inductively, we see that A\ := o7y ... 7, _2 is a product
of an (n—d)—cycle and a d—cycle, and that these two cycles are fused by 7,,_1.
Now, by induction on the degree of G, we get that the group generated by the
transitive genus 0 system (01,71, ..., Tm_2, A~') with respect to the support
of size n—d admits a block system of d blocks being permuted cyclically. Now
extend each block A by a single point from the remaining d points as follows:
Choose j such that 7,,_; moves a point w from A%. Now append w™ 191’
to A. One verifies that this process is well-defined, and gives a block system

for (o1, 71,...,Tm-1) with d blocks being permuted cyclically. It remains to
show that this block system is preserved also by (o}, 7{,...,7) ;). At any

rate, by symmetry we get a block system for this tuple too, with d blocks
being permuted cyclically. The point is that the product of the elements in
this tuple is the same n—cycle as the product of the elements in the former
tuple, and an n—cycle has a unique block system with d blocks. Therefore
the block systems are the same, so are respected by G.

Lemma 3.2.2. Let m > 3 and fix a set A with |A| = m. Let 01,09,...,0, €
Sym(A) x Sym(A) be a genus 0 system on A x A. Write 0; = (a;, b;) with
a;, b; acting on the first and second component, respectively. Then by, ..., b,
is a genus 0 system on A (and likewise for a;).

Furthermore, suppose that o, has only two cycles on A x A. Then a, or
b, is an m—cycle. Assume that b, is an m—cycle. If B := <by,bq,...,b,> 1is
primitive on A, then B 1is cyclic.

Proof. Let 0 = (a,b) be one the elements oy. Let 1, po, ... and vy, vs,. ..
be the cycle lengths of @ and b, respectively. Clearly
ind(o) = m? — chd(ui, vj), (3.2)
()
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hence
ind(c) > m? — Z v,
2
> m? — Zmuj
J
= mind(b).
Summing for 0 = oy, k=1,2,...,r, yields

2(m? — 1) > mZind(bk),

hence ), ind(by) < 2(m—1)+2(1—1/m). But ), ind(by) is an even integer
> 2(m — 1), see Section 3.1.2, hence the by constitute a genus 0 system on
A.

Now suppose that o has only two cycles. Then ind(c) = m? — 2, so
> j8cd(pi, v;) = 2 with the notation from above. As each summand on the
left hand side is > 1, either a, or b, is an m—cycle.

Suppose that b, is an m—cycle. The previous argument shows that a, is
a product of two cycles. Assume that B is primitive, but not cyclic. We
contend that

ind(og) > mind(bg) + ind(ag) for all 1 <k <r —1. (3.3)

Suppose that is not the case for some o = 4. Then, with the notation from
above,

m® — ) ged(ps, v5) < mZ(Vj — 1)+ Z(Mi —1)

1,J J

=m2—m21+2(ui—1)

J i

:m2—Zui+Z(,ui—1).

i, i
Hence there is a least one index ¢ such that

Zng(Mm vj) > Zui +1—p

J J
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Note that this gives p; > 1. Rewrite this inequality as

> (i — ged(piy vy)) < i — 1.

J

Let w be the number of those j such that p; does not divide v;. Clearly,
— ged(pi, v5) > pi/2 for those j, so

w/'Lz/2 < Z ng His VJ)) < Wi — 17

hence w < 2(p; —1) /s < 2, s0 w < 1. Suppose w = 1, so there is exactly one
index jo with p; not dividing v,,. We obtain d := ged (s, vjy) > pi+1—p = 1.
So the integer d > 1 divides all the numbers v;, and if w = 0, we may take
d = p; > 1. As d does also divide m, and b, is an m—cycle by assumption,
we get inequality (3.3) in view of Lemma 3.2.1.

Note that

ind(o,) = m* -2
=m(m— 1)+ (m — 2)
= mind(b,) + ind(a,),

so we have equality in (3.3) for £ = r. Compute the sum of (3.3) for k =
1,2,...,r to obtain

T

2(m* —1) =) _ind(oy)

> "(mind(b;) + ind(az))
=m(2(m —1)) + 2(m — 1)
=2(m? - 1).

As we obtain equality, we have equality everywhere. In particular, the proof
of (3.3) shows that that for any 0 = oy, k = 1,2,...,7 — 1, the following
holds:

For each 1, either y; = 1, or there is exactly one j such that y;
does not divide v;.
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For k =1,2,...,r —1, let my be the maximum of the p; associated to oy. It
follows that my, < v; for all but at most one index jy. So summing up for all
J # jo, we obtain

(m —ind(bx) — I)mg < m —m;, <m — 1.

Now divide by my and sum up for £ =1,2,...,r to obtain

—_

3 (1—i)<1.

me’ =
1 k

ES
Il

This shows that there are at most 2 indices £ with m; > 1, and if there are
two of them, then my; = 2 for these indices. On the other hand, as a, is a
product of two cycles, so in particular <a,> is intransitive, there must be at
least two non—trivial elements among a,, as, . .., a, 1. This shows that among
these ay, there are precisely two involutions. Thus A := <aq,as,...,a,> is a
dihedral group of order 2ord(a,). However, m is relatively prime to the cycle
lengths of a,, hence ged(m,ord(a,)) = 1. But m divides |A| = 2ord(a,) by
transitivity, contrary to m > 2. U

3.3 Genus 0 Systems for Affine Action

In order to apply results by Guralnick, Neubauer, and Thompson on genus 0
systems in primitive permutation groups of affine type we need the following

Lemma 3.3.1. Let A be a primitive affine permutation group of degree n >
2, and G be a normal subgroup of A which contains an element o with only
two cycles. Then G is primitive, or one of the following holds:

(a) A= Ay or 84 on 4 points, G = Cy x Cs.

(b) p > 3 is prime, A = (AGL;(p) X AGL1(p)) x Cy in product action of
degree p*, G = AGL;(p) x AGL:(p).

Proof. The case n = 4 is obvious, thus suppose n # 4. Theorem 2.4.9 lists the
possibilities for A. Use the notation from this theorem. First suppose that
A = (AGL;(p) x AGL;(p)) x Cy in product action, so (c¢) of Theorem 2.4.9
holds. As the cycle lengths of o are distinct, we must have o € AGL;(p) x
AGL;(p). Let Ay x Ay be the product structure preserved by A. The proof
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of Theorem 2.5.5 shows that o acts as a (p—1)—cycle on A, and as a p—cycle
on A (or vice versa). Let 7 be the element in A which switches A; and As.
Then also 6™ € (G, thus G restricted to A; is doubly transitive for + = 1 and
2. Clearly AGL;(p) x AGL;(p) < G, so possibility (b) holds.

If o has a fixed point, then G is clearly doubly transitive, so in particular
primitive. Thus assume that ¢ has no fixed point.

First consider that A; = GL,,(p) with mm > 2 and p # 2,3 if m = 2. As
G1 < A, either SL,,(p) < G1, and thus G is primitive, or G; is a group
of scalar matrices. But then each element in G is either a translation by a
vector, so has p™/p = p™' > 2 cycles, or has a fixed point, contrary to
o €ed.

Check the claim directly in the finitely many remaining cases of Theorem
2.4.9. U

Proposition 3.3.2. Let A be a primitive affine permutation group of degree
n > 2, and G be a normal subgroup of A which admits a genus 0 system
(01,09,...,0.). Let T := (ord(oy), ord(og),...,ord(c,)) be the type of this
system. Suppose that o, has exactly two cycles. Then one of the following
holds:

() n=3,G=8s=A,T=(223), or (2,2,2,2).

(b)) n=4, G=CyxCy < A< 8y, T =(2,2,2).

(c)n=4, G=A,<A<LS, T=(23,3),(3,3,2), or (3,3,3).

() n=4G=8=AT=(243),(223,3), (2,2,2,2,3), (2,2,2,3),

(27 27 272 2)

(e) n=>5, G=AGL,(5) = A, T =(2,4,4)

(f) n=7,G=AGL(7) = A, T = (2, 3,6)

(9) n=8, G=ATL,(8) =A, T =(3,3,6), or (3,3,7)

(h) n =8, G=AGL3(2) = A, T =(3,4,7), (2,6,7), or (2,4,7), (4,4,7),
2,7,7), (2,2,2,7), (2, 2, ), (2,2,4,7), (2,2,2,2,7), (2,7,6), (3,4,6),
(4’ 47 6)7 (27 27 37 6) ( Y 7 ’6) (27 2’ 27 2’6)7 (27 4’ 7)7 (37 47 4)7 (4’ 4’ 4)7
(25 27 37 4)7 (27 25 47 4)’ or (27 27 27 274)'

(i) n=9,G=(S3x83) xCy=A, T=(2,4,6), or (2,2,2,6).
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(i) n=9, G=ATL,(9) = A, T = (2,4,8).

(k) n=9, G=AGLy(3) = A, T =(2,3,8), (2,6,8), or (2,2,2,8).

(1) n=16, G = A, [TL1(16) : A1] =3, T = (2,4,8).
(m) n=16, Gy = (C5 x C3) x Cy < Ay < (S3x83) x Co, T =(2,4,8).

() n=16,G=(Syx8,)xCo=A,T=(268), (22,2,8), (2,4,12), or
(2,2,2,12).

(o) n =16, G, = S = A;, T = (2,5,8), (2,6,8), (2,2,2,8), (2,4,12),
(2757 12)7 (27 65 12)’ (27 27 27 12)

() n=16, G = AT'Ly(4) = A, T = (2,4, 15).
(q) n = 16, G1 = .A7 = Al, T = (2,4, 14)

(r) n =16, G = AGL4(2) = A, T

= (2,5,14), (2,6,14), (2,2,2,14),
(2,4,15), (2,5,15), (2,6,15), or (2,2,2,15).

(s) n =32, G =AGL5(2) = A, probably several possibilities for T.
(t) n =64, G = AGLg(2) = A, probably several possibilities for T

Proof. The cases that A has degree < 4 are immediate, so assume n > 5.
Let N be the minimal normal subgroup of A. We start by assuming
that G is primitive. First suppose that G" = 1. As G' is abelian, we have
G' = N, and primitivity of G forces that G/N acts irreducibly on N. But
G/N = G/G'" is abelian, so G/N is cyclic by Schur’s Lemma. More precisely,
we can identify G as a subgroup of AGL;(q), where ¢ = |N| = p™ for a prime
p. As g > 4, we have necessarily that o fixes a point and moves the remaining
ones in a (g—1)—cycle. An element in N has index ¢(1—1/p) > ¢/2, whereas
an element in AGL;(q) of order ¢|¢ —1 has index (¢—1)(1—1/t) > (¢—1)/2.
The index relation gives » = 3 and that neither o, nor o, is contained in V.
So2(¢—1)=qg—2+(g—1)(1—1/ti +1—1/ts) > g—2+(q—1)(1/2+2/3),
where ¢; is the order of o;. It follows ¢ < 7, yielding the cases (e) and (f).
Next suppose that G” > 1, but still G is primitive. Write n = p™. We use
[27, Theorems 4.1, 5.1]. If p > 5, then p =7 or 11, and m = 2. Furthermore
T =(2,4,6) forp="T7,or T = (2,3,8) for p=11. So this does not occur in
view of ord(o,) > n/2 = p?/2. Next suppose p = 5. We use [58, Theorem
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1.5] (the statement is already in [27], but only parts are proven there). Again
compare ord(c,) > n/2 with the possible genus 0 systems given for p = 5.
Only n = 25 with G = (C5 x C5) % (SLg(5) x Cs) could arise. However, this
group does not have an element with only two cycles by Theorem 2.4.9.

So we have p = 3 or 2. Suppose that p = 3. Use [58, Theorem 1.5] to see
that necessarily n = 9. Check directly that only the cases listed as (i), (j),
and (k) are possible.

Now suppose p = 2. By [26], we automatically get n < 64. The cases for
n < 16 are small enough to be checked with GAP. The cases which we could
not check but which do not deserve a closer analysis are those listed in (s)
and (t).

Finally, if G is imprimitive, then G = AGL;(p) x AGL(p) in product
action by Lemma 3.3.1, and there is no genus 0 system of the required type
by Lemma 3.2.2. O

3.4 Genus 0 Systems for Product Action

Proposition 3.4.1. Let A be a primitive non—affine permutation group in
product action. Let G be a normal subgroup of A which admits a genus 0
system (o1,09,...,0.). Suppose that o, has exactly two cycles. Then G =

(S X Si) x Cy = A.

Proof. By Theorem 2.5.5, we have have A = (U x U) x C5 in product action,
where either U = S,,,, or U = PGLy(p) for a prime p > 5. It follows from
Lemma 3.2.2 that we cannot have G < (U x U). On the other hand, the
presence of o, forces U x U < G, see the proof of Theorem 2.5.5, so G = A.

Let A be the set U is acting on, and let 2 := A x A be the set G = A
acts on.

We show the existence of a genus 0 system of the required form for U =
Sm. Write A :={1,2,...,m}. Let 7 € G be the element which maps (i, j)
to (4,4). Let 1 < a < m be prime to m. For a := (1,2,...,m) € S,;, and
B:=(a,a—1,...,2,1)(mm—1,...,a+2,a+1) € S;;, set o1 := (a, ) € A,
09 =T, 03 := (0109) 1. We show that (o1, 09, 03) is a genus 0 system of G.

First we show that oy and oy generate G. Note that a, m — a, and m are
pairwise prime. Let 7 and s be integers such that rm =1 (mod a(m—a)) and
sa(m —a) = 1 (mod m). Then clearly o™ = (1, 3) and giatm=a) — (o, 1).
Conjugating with 7 shows that also (5,1),(1,a) € G. We are done once
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we know that «, § generate S,,. But this is clear, because it is easy to see
that the generated group is doubly transitive and contains the transposition
af = (a,m).

We compute the index of g;. The element o; has a cycle of length ma,
and another one of length m(m — a). So ind(oy) = m? — 2. Furthermore,
ind(oy) = (m? — m)/2, because 0, = 7 has exactly m fixed points, and
switches the remaining points in cycles of length 2. Next, o3 := 7(a™t, 7).
The element (4,5) € Q is a fixed point of o3 if and only if j = i® and i = j¥,
hence j = i + 1 with ¢ # a,m. Thus there are exactly m — 2 fixed points.
Now o2 = ((a,m), (a + 1,1)) has order 2 and exactly (m — 2)? fixed points.
Lemma 3.1.1 gives

ind(03) = m* — %(90(4)(7'1 —2) +¢(2)(m — 2)” + p(1)m?)

= (m* +m)/2,

so the genus of (01, 09, 03) is 0.

We now show that U = PGLy(p) does not occur. Again, let 7 be the ele-
ment which flips the entries of 2. At least two of the elements in o4, ...,0,_;
must be of the form o = («, 8)7, with a, 8 € PGLy(p). This o is conjugate
in G to (1,af)7. If a8 = 1, then ind(c) = ((p+1)* — (p+1))/2. Otherwise,
ind(o) > 2((p+1)*>—4)/3, because 0> ~ (a3, a3) has at most 4 fixed points.

If o has the form (a, 3), then o has at most 4(p + 1) fixed points, so
ind(0) > ((p+ 1% — 4(p+ 1))/2

As Z;;l ind(0;) = (p+1)?, it follows from these index bounds that r = 3,
so 01 and o9 have the 7—part. Because not both o; and o, can be involutions
(for G is not dihedral), we obtain (p+1)*> ((p+1)> = (p+1))/2+2((p +
1)2 —4)/3, so p < b, a contradiction. O

3.5 Genus 0 Systems for Almost Simple Ac-
tion

Proposition 3.5.1. Let A be a primitive permutation group of degreen > 2,
such that S < A < Aut(S) for a simple, non—abelian group S. Let G be a
normal subgroup of A which admits a genus 0 system (oy,09,...,0,). Let
T := (ord(oy), ord(0os), . .., ord(c,)) be the type of this system. Suppose that
o, has ezxactly two cycles. Then one of the following holds:
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(a) n > 5, A, < G < A <S8, in natural action. Many (unclassifiable)
possibilities for T.

(b) n= 6: G = PSL2(5) < A < PGL2(5)7 T = (27375)7 (27575)7 (2727275);
(2’ 57 3)’ or (2’ 27 27 3)'
(¢c) n=6, G=PGLy(5) = A, T = (2,4,5), (4,4,5), or (4,4,3).

(d)n =8, G = PSLy(7) < A < PGLy(7), T = (2,3,7), (3,3,7), or
(3,3,4).

(¢) n=8, G =PGLy(7) = A, T = (2,6,7), or (2,6,4).

(f) n=10,G=As < A< S5, T =(2,3,5).

(9) n=10,G=8s=A, T =(2,4,5), (2,6,5), or (2,2,2,5).

(h) n =10, G = PSLy(9) < A < PTLy(9), T = (2,4,5).

(i) n =10, G = PSLy(9) < A < PT'Ly(9), T = (2,6,5), or (2,2,2,5).
(i) n=10, G =My < A < PI'Ly(9), T = (2, 4,8).

(k) n =10, G = PT'Ly(9) = A, T = (2,8,8).

() n =12, G = My; = A, T = (2
(2

: ,8) (2,6,8), (3,3,8), (2,2,2,8),
(2,4,11), (2,5,11), (2,6,11), or (2,2,2

,2,2,11).

(m) n=12, G = My = A, many possibilities for T.

(n) n =14, G = PSLy(13) < A < PGLy(13), T = (2,3,7), or (2,3,13).
(o) n=21, G =PXL;3(4) < A<PTL3(4), T = (2,4,14).

(p) n=21, G=PILy(4) = A, T = (2,3,14), (2,6,14), or (2,2,2, 14).
(q) n=22, G =My <A< My xCo, T=(2,4,11).

(r) n=22, G=MypxCy=A,T=(24,11), (2,6,11), or (2,2,2, 11).
(s) n =24, G = My, = A, many possibilities for T.

(t) n =40, G = PSL4(3) < A < PGL,(3), T = (2,3, 20).
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(u) n =40, G =PGL4(3) = A, T = (2,4, 20).

Proof. We have to check the groups in Theorem 2.8.1 for the existence of
genus 0 systems of the required form.

If S = A, in natural action, then it is easy to check that there are many
such genus 0 systems, and it is obviously not possible to give a reasonable
classification of them.

Next, the cases (b), (e), (f), (g), (h), (i), (j) of Theorem 2.8.1 are easily
dealt with, using the atlas [8] and some easy ad hoc arguments, or more
conveniently using [61].

Now assume PSLy(¢) < G < PI'Ly(g¢) in the natural action, with ¢ > 5
a prime power. Note that ¢ is odd. As n = ¢+ 1 and ind(o,) = n — 2, the
index relation gives

r—1

g+1= Zind(ak).

k=1

We distinguish two cases.

First assume G < PGLy(g). For 0 € PGLy(q) we easily obtain (see e. g.
[54]) that ind(¢) > (¢ — 1)(1 — 1/ord(o)). So the index relation gives

ﬁ
|
-

g+1
(1 —1/ord(oy)) < -1

=
Il

1

As G is not dihedral, either > 4, or r = 3 and o; and o9 are not both
involutions. In the first case, we obtain ¢ = 5, and in the second case,
S (1—1/ord(oy)) > (1—1/2) + (1 —1/3) gives ¢ < 13. Check these cases
directly.

Next suppose that G £ PGLs(q), but G < PI'Ly(g). Check the case
g =9, 0, & PGLy(9) directly and exclude it in the following. Thus o, €
PGL3(¢g) by Lemma 2.8.29. Denote by 65 the image of o in the abelian
group PI'Ly(q)/ PGLa(g). Then the elements 64 for £ = 1,...,7 — 1 are
not all trivial and have product 1. Thus the order of two of the elements
01,09, ...,0,-1 have a common divisor > 2. Furthermore, for 0 € PI'Ly(g),
we have the index bound ind(o) > (1 — 1/ord(c))(q — /q), see [54]. This
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information, combined with the index relation, gives

Hence ¢ < 5,/ +4, s0 ¢ =9, 25, or 27. If ¢ = 27 = 3°, then the above
argument shows that the common divisor can be chosen to be 3, so the
analogous calculation gives 4/3 < (27 +1)/(27 — v/27), which does not hold.
Similarly, refine the argument (using [54]) or simply check with [61] that
g = 25 does not occur.

The main case which is left to investigate is (d) of Theorem 2.8.1, namely
that PSL,,(¢) < G < PI'L,,(q) acts naturally on the projective space, ¢ is
an odd prime power, m > 2 is even, and o, is the square of a Singer cycle.
The case m = 2 has been done above. The case m > 4, which is somewhat
involved, will be handled in the remaining part of this section. In order to
finish the proof of Proposition 3.5.1, we need to show that m = 4, ¢ = 3,
giving the cases (t) and (u) in that proposition.

For this we need the following index bounds.

Lemma 3.5.2. Let q be a prime power, and 1 # o € PT'L,,(q), where m > 4.
Then the following holds:

(a) ind(c) > (1 —1/ord(c))(¢g™ " - 1).

(b) If ord(c) is a prime not dividing q(¢ — 1), and 0 € PGL,,(q), then
ind(o) > (1 —1/ord(0))g™ 2(q + 1).

(¢) If ord(o) is a prime dividing q, and 0 € PGLy(q), then ind(o) =
(1—-1/0rd(c))(¢™ — ¢7)/(q — 1) for some 1 < j <m—1.

Proof. For (a) see [54].
Set N :=(¢™ —1)/(q — 1), and let s be the order of o.
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Now assume the hypothesis in (b). Let x(o) be the number of fixed
points of 0. Then clearly ind(¢) = (N — x(0))(1 — 1/s). Let 6 € GL,,(q)
be a preimage of o of order s. For o € F, let d(«) be the dimension of the
eigenspace of 6 with eigenvalue . Clearly

So x(0) < (¢* —1)/(g — 1), where d = Y__d(a). On the other hand, as s
does not divide ¢ — 1, 6 must have eigenvalues not in F,. So d < m — 2, and
the claim follows.

To prove (c), note that a preimage of order s of ¢ in GL,,(¢) admits
Jordan normal form over F,,. O

Set N := (¢™ — 1)/(¢ — 1). Note that ind(o,) = N — 2, so the index
relation gives

ind(og) = N. (3.4)

Claim 3.5.3. r = 3.

Proof. Suppose that r > 4. From (a) in Lemma 3.5.2 we have ind(oy) >
(1 —1/ord(o)) (g™t — 1), hence

ﬁ
|
—

(1 —1/ord(oy)) <

1 _
1 qm 1

£
I

<1l+ 2
g—1

First note that if » > 4, then 3/2 < 1+q%1, so ¢ < 5 and hence ¢ = 3. We

get more precisely 1 (1—1/ord(0)) < 1+1/(3—1)+1/(27—1) = 20/13.
However, 2(1 —1/2) + (1 —1/3) =5/3 > 20/13, so besides ¢ = 3 we obtain
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r =4, and 0y, 09, 03 are involutions. Note that o4 has cycles of even length,
as 4|N. So these involutions do have fixed points by Lemma 3.2.1. Let & be
a preimage in GL,,(3) of an involution in PGL,,(3) with fixed points. Thus
52 has eigenvalue 1 on the one hand, but is also scalar. So & has only the
eigenvalues 1 and —1, and both eigenvalues occur. This shows x(o) = 2
(mod 3), hence ind(c) = (N —2)/2=1 (mod 3). So

3
1=N=> ind(o;) =0 (mod 3),
k=1

a contradiction. O
Claim 3.5.4. ¢ < 7.
Proof. From (3.5) and r = 3 we obtain

1 n 1 > 1 1 1 > 1 1 1
ord(o1)  ord(oe) — g—1 g¢gm1—-17 g—1 ¢ -1

(3.6)

o1 and oy are not both involutions (because G is not dihedral). This gives
1/2+1/3>1-1/(g—1)—1/(¢*—1),s0 g < 8. O

In the following we assume ord(o;) < ord(oy).

Claim 3.5.5. ¢ # 7.

Proof. Suppose ¢ = 7. From (3.5) we obtain 1/ord(c7) + 1/ord(o3) > 1 —
1/6 —1/(7®—=1) > 3/4, hence ord(oy) = 2, ord(os) = 3. Again, as 2|(N/2) =
ord(o3), we get that o; has fixed points, and so x(o1) = 2 (mod 7), hence
ind(o1) = 3 (mod 7). From 3 + 2(N — x(02))/3 = 3+ ind(o2) = N =1
(mod 7) it follows that x(o2) = 4 (mod 7). So a preimage 6, € GL,,(7) of
09 has exactly 4 different eigenvalues A in F;. Let 63 be the scalar p. The
equation X3 — p has at most 3 roots in F7, a contradiction. O

Claim 3.5.6. ¢ # 5.

Proof. Suppose ¢ = 5. The proof is similar to the argument in the previous
claim, so we only describe the steps which differ from there. We obtain
ord(oy) = 2 and ord(oy) = 3 or 4.

First assume that ord(oy) = 3. As 3|N, we obtain that o, has fixed
points by Lemma 3.2.1, so a preimage g, € GL,,(5) has eigenvalues in Fs.
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Suppose (without loss, as ged(g — 1,3) = 1) that 1 is one of the eigenvalues.
As (X3 —1)/(X — 1) is irreducible in Fs, this is the only F5-eigenvalue of
da. S0 x(02) =1 (mod 5), hence ind(o2) =0 (mod 5). This gives x(o1) =4
(mod 5), which is clearly not possible.

Now assume that ord(oy) = 4. The index relation together with Lemma
3.1.1 gives

2x(01) + 2x(02) + x(03) = N. (3.7)

Clearly, x(02) > x(03). If x(02) = 0, then x(0;) = 3 (mod 5), which is not
possible. Thus o2 has fixed points.

First assume that oy has no fixed points. Then oy has fixed points by
Lemma 3.2.1, so xo; = 2 (mod 5). From that we obtain

20" =)+ GB™ 1))+ (B"=1)+(B™"—1))=5m -1

for suitable 1 < a,b < m — 1. However, 5% + 5™~% < 5+ 5™~! and similarly
for b, so 3(5 + 5™71) > 5(5™~1 4+ 1). This gives 5™~ < 5, a contradiction.

So o9 has fixed points as well, therefore all eigenvalues of a preimage
gy € GL,,(5) are in F5. Without loss assume that 1 is an eigenvalue of s,
and denote by a, b, ¢, d the multiplicity of the the eigenvalue 1,2,3,4 € F;,
respectively. Clearly b+ ¢ > 0, as g3 has order 4. Also, a > 0 by our choice.
We obtain that x(o3) = (5*7¢—1)/4+(5°T¢—1) /4, hence x(c%) = 2 (mod 5).
Relation (3.7) gives x(01) + x(02) =2 (mod 5). If o7 has fixed points, then
x(01) = 2 (mod 5), hence x(02) = 0 (mod 5), which is not the case. Thus
x(01) = 0 and x(02) = 2 (mod 5), so d = 0 and either b = 0 or ¢ = 0.
Suppose without loss ¢ = 0. Hence x(02) = x(02), and we obtain

V=T o)+ x(ed) = axtow = 3 (T + T ).
SO
5™ 4+ 5=3(5%+5m"%) < 3(5+ 5™,
a contradiction as previously. O

Claim 3.5.7. If ¢ = 3, then m = 4 and (ord(o1), ord(o3)) = (2,3) or (2,4).
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Proof. Asind(oy) > (3™~1 —1)/2, and ind(0}) > 2(3™~2 — 1) unless oy, is an
involution in PGL,,(3) of minimal possible index, we obtain from the index
relation (3.4) that

3™~1 in any case,

ind(oy) < {

S47 43 °43 for k = 2 if o, has not minimal possible index.
(3.8)

We first note that no prime s > 5 does divide ord(oy), for (3.8) and
Lemma 3.5.2(b) would give

1
(1- g)3’”*24 <ind(o}) < 3™ 1,

which is nonsense.

Similarly, we see that 9 does not divide ord(oy). Let 0 € PGL,,(3) have
order 9, and let 6 € GL,,(3) be a preimage of order 9. So 6 admits Jordan
normal form over 3, and there must be at least one Jordan block of size > 4
by Lemma 2.4.1. Thus x(o) < (3™7® —1)/2, and also x(¢®) < (3™t —1)/2.
Now

1 2

ind(0) = (1= 5N = 2x(0) = =x(0")

by Lemma 3.1.1. Use the above estimation to obtain after some calculation
that ind(o) > 32-3™* > 3™~  contrary to (3.8).

Now suppose that 4 divides the order of o,. Let o be a power of o of
order 4. As oy must have a cycle of odd length by Lemma 3.2.1, ¢ must
have a fixed point. Thus there is a preimage 6 € GL,,(3) of o with 6% = 1.
Let @ and b be the number of Jordan blocks of size 1 with eigenvalue 1
and —1, respectively, and let j be the number of square blocks of size 2.
The square of such a block matrix is a scalar with eigenvalue —1. We have
a+b+2j=m,and 2<a+b<m—2. Also, x(o) = (32 —1+3"—1)/2 and
x(0?) = (3%"° — 1+ 3% — 1)/2. From that we obtain

. 3 1 1
ind(0) = 5N ~ 5x(0) - 3x(0*)
a b a+b m—a—b __
3y 3432 33 2
4 4 8
m—2 m—2
>§N—3 1_3 +7
— 4 4 8
=3""— 1.
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Note that ind(oy) > ind(o). From that we see that k& = 2, and by (3.8) it
follows that oy is an involution with minimal possible index. Thus ind(o3) =
3™m~1 again by (3.8). This shows that ord(o3) is not divisible by 3, because
then a cycle of o5 of length divisible by 3 would break up into at least 3
cycles of o, s0 ind(gy) > 2 +ind(c) > 1+ 3™1, a contradiction to (3.8).

Similarly, we see that 8 does not divide ord(o3). Suppose otherwise. Then
we get the same contradiction unless ord(oy) = 8 and o9 has exactly 1 cycle of
length 8. But then o5 has N — 8 fixed points, however x(o3) < (3™ ' +1)/2,
s0 (3™ —1)/2—8 < (3™ ! +1)/2, s0 3™ ! <9, a contradiction.

So ord(oy) = 4, and ind(02) = 3™~! by what we have seen so far. Express
ind (o) in terms of @ and b as above. As &, fixes a hyperplane pointwise, and
<61, 09> is irreducible, we infer that a,b < 1. Also,a+b>0,s0a=b=1
because a + b is even. Substitute a = b = 1 in the relation ind(oy) = 3™!
to get 3™~! = 27, so m = 4. This case indeed occurs.

Next we look at elements of order 6. Let o € PGL,,(3) have order 6, and
6 € GL,(3) be a preimage. We have

5) 1 1 1
: —N_-Z - 2y _ — 3 .
ind(0) = 2N = 2x(0) = 10 - 2x(e?)
Clearly
3t —1
2
x(0%) < —
and
gm—14 1
x(0?%) < A
2
If o has no fixed points, then 6® = —1, and therefore ¢® has no fixed points

as well. In this case, we thus obtain ind(c) > 5N/6 — x(0?)/3 > (13-3™"! —
3)/12 > 3™~ This, in conjunction with (3.8), shows that if ord(oy) = 6,
then oy has a fixed point. Suppose that ¢ = o has order 6 and a fixed point.
Then & admits Jordan normal form over F3, and one realizes easily that

32 —143" -1 3"?%41
2 2
Using this, one obtains after some calculation
17-3™ 1 -9
18 '

x(o) <

ind(o) >

80
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However, (17-3™"1 —9)/18 > (5-3™"2 4 3)/2, so we get from (3.8) that
k = 2 and o, is an involution with minimal index. So ind(cq) = 3™' by
(3.4), and oy leaves a hyperplane invariant. The irreducibility of <oy, 09>
forces that &5 has eigenspaces of dimension at most 1. On the other hand,
the Jordan blocks of 65 have size at most 3. As m > 4, there is thus exactly
one Jordan block with eigenvalue 1, and exactly one with eigenvalue —1. Let
u and m — u be the size of these blocks, respectively. Clearly x(o2) = 2,
x(02) =4, and x(03) = (3* + 3™* — 2)/2. From that one computes

5-3Mm =34 =3m " =27

ind(o9) = T

Now ind(os) = 3™ ! yields the equation 3™ = 3% 4+ 3™~ 4 27, which gives
3m" = (3% +27)/(3" — 1). Check that the right hand side is never a power
of 3 foru=1,2,3.

It remains to look at ord(cy) = 3. Then ord(cy) = 2 or 3. Note that
ind(oy) = 3™ ' — 32271 by Lemma 3.5.2(c), where js is the number of Jordan
blocks. Suppose that ord(o;) = 3, and let j; be the number of Jordan blocks.
The index relation yields 3™ ' +1 = 2(3/27'+37271). Looking modulo 3 shows
that j; = jo = 1. But this gives m = 2, a contradiction.

Finally, suppose ord(o;) = 2. As the cycles of o3 are divisible by 2,
Lemma 3.2.1 shows that o; has fixed points. Then ind(c;) = (3™ — 3¢ —
3™ +1)/4, where 1 < i < m — 1 is the multiplicity of the eigenvalue 1 of
an involutory preimage of oy in GL,,(3). The index relation yields

3T =3 43" 44377 -3,
If : =1 or m — 1, then the right hand side is bigger than the left hand side.
Thus 2 < ¢ < m — 2. Looking modulo 9 then shows that jo = 2, so we get

3m=1 = 3% 4+ 3™~ 1 9. Looking modulo 27 reveals that 3 = 3™~ = 9, thus
m = 4. This occurs indeed. O

This previous claim finishes the proof of Proposition 3.5.1. O

3.6 Genus 0 Systems with n—Cycle

We will need the following
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Proposition 3.6.1. Let G be a non—trivial normal subgroup of a primi-
tive permutation group of degree n, such that G admits a genus 0 system
(01,09,...,0.). Let T := (ord(oy), ord(oy),...,ord(c,)) be the type of this
system, and suppose that o, is an n—cycle. Then one of the following holds:

(a) Infinite series:

(i) n=p, G=C,, T = (p,p), p a prime.
(it) n=p, G=D,, T =(2,2,p), p an odd prime.
(i) G = A, (n odd) or S,, many possible types.

(b) Davenport polynomial cases (see Section 4.5):

(i) n="7,G=PGL3(2), T = (2,3,7), (2,4,7), or (2,2,2,7).
(ii) n =11, G = PSLy(11), T = (2,3, 11).

(iii) n = 13, G = PGLy(3), T = (2,3,13), (2,4,13), (2,6,13), or
(2,2,2,13).

(iv) n =15, G = PGL4(2), T = (2,4, 15), (2,6,15), or (2,2,2,15).
(v) n=21, G =PILy(4), T = (2,4,21).
(vi) n =31, G =PGLs(2), T = (2,4,31).

(c) Sporadic cases:

(i) n="6, G =PGLy(5), T = (2,4,6).
(ii)) n =8, G = PGLy(7), T = (2,3,8).
(iii) n =9, G =PTLy(8), T = (2,3,9) or (3,3,9)
(iv) n =10, G = PTLy(9), T = (2,4, 10).
(v) n=11, G =My, T = (2,4, 11).
(vi) n =23, G =My, T = (2,4,23).

Proof. Let A be the primitive group where G is the normal subgroup of,
and set C' := <o,>. The result follows from [54] once we know that G is
primitive. But this is the case. Namely let S be a block system of G. Then
S consists of the orbits of a subgroup of C. As C' is cyclic, S is the unique
block system of this size. On the other hand, for a € A, S* = {A®| A € S}
is a block system of GG as well. Thus S is a block system of A, and hence a
trivial one, because A is primitive. O
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Chapter 4

Rationality Questions

To ease the language in the following, we make the

Definition 4.0.2. Let k£ be a number field, and g(Z) € k(Z) be a non—
constant rational function. Choose a transcendental ¢, let L be a splitting
field of ¢(Z) — t over k(t), and k the algebraic closure of k in L. Then
A := Gal(L/k(t)) and G := Gal(L/k(t)) are the arithmetic and geometric
monodromy group of g over k, respectively. We regard both groups as per-
mutation groups on the roots of g(Z) —t. Note that A/G = Gal(k/k). (This
notion is motivated by the fact that the geometric monodromy group can
be seen as the monodromy group in the usual sense defined by the branched
covering P' (C) — P'(C), z — g¢(z) of Riemann spheres, see Section 3.1.1.)

4.1 Siegel Functions

Let k£ be a number field, and f(X,?) € k(¢)[X] be an irreducible polynomial
over k(t). Proposition 1.1.1 gives a description of the set R of specializations
to € O, such that f(X,ty) becomes reducible, as a union of a finite set and
finitely many infinite sets of the form g(k) N Oy, where g(Z) € k(Z) is a
rational function. The condition that g assumes infinitely many values in Oy
on k is quite strong, and puts severe restrictions on the form of g. This basic
result is due to Siegel [66].

Proposition 4.1.1. Let k be a number field, Oy its ring of integers, and
let g(Z) € k(Z) be a rational function such that |g(k) N Ok| = oco. Then
g7 (o0)| < 2.
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CHAPTER 4. RATIONALITY QUESTIONS

If k = Q, and |g7'(c0)| = 2, then the two elements in g~'(o0) are real
and algebraically conjugate.

Remark. It is easy to see that not much more can be said about g, see the
proof of Lemma 5.2.5.

As is clear from the Galois theoretic setup in Lemma 1.2.1, the mon-
odromy groups of rational functions g as above will play a crucial role. The
arithmetic and geometric monodromy groups of rational functions over k£ do
not change if we compose the rational function with linear fractional func-
tions over k. We will frequently take advantage of this trivial fact without
further notice.

Definition 4.1.2. Let £ be a number field, and g(Z) € k(Z) be a non-
constant rational function. Suppose there is @ € P'(k) such that j :=
lg7 ()| < 2. We call g(Z) a Siegel function of the first kind if j = 1.
We say that g(Z) is a Siegel function of the second kind if j = 2, where
for k = Q we additionally require that the elements in ¢~ '(a) are real and
algebraically conjugate. Also, ¢ is called a Siegel function if it is a Siegel
function of first or second kind.

Remark 4.1.3. It follows immediately from the definition that a Siegel func-
tion of the first kind is of the form A(h(u(Z))), where h(Z) € k[Z] is a
polynomial, and A, p are linear fractional functions over k.

The following lemma is almost trivial.

Lemma 4.1.4. Let g(Z) = a(b(Z)) with a,b € k(Z) non—constant rational
functions, and assume that g is a Siegel function.

If g s of first kind, then a and b are Siegel functions of the first kind.

If g is of second kind, then either a and b are Siegel functions of the first

and second kind, respectively; or a is a Siegel function of the second kind, and
b(Z) = A((u(Z))™) for m € N and linear fractional functions A\, u € k(Z).

Proof. Use the notation from the definition. We have g *(a) = b !(a *(c)).
If [¢7*(«)| = 1, then clearly g, a, and b are Siegel functions of the first kind.
Thus assume that g7'(a) = {y1,72} with 7, # 5. Clearly |a™ ()| < 2.
If a='(a) = {8}, then 3 € P!(k), and a is a Siegel function of the first kind,
whereas b is a Siegel function of the second kind.
Next assume that a™'(a) = {81, 62}, with 81 # (. Then [b71(5;)| = 1
for i = 1,2, so the extension k(Z)/k(b(Z)) has the two totally ramified
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places b(Z) — ;. This implies that b is a linear fractional twist of a cyclic
polynomial. Furthermore, if £ = Q, then the [; are real and algebraically
conjugate, because b(g~'(a)) = {1, 32} The claim follows. O

4.2 A Galois Theoretic Existence Criterion

If g(Z) € Q(Z) is a Siegel function of the second kind over Q, then deg(g) =
2m and the geometric monodromy group contains an element which is a
product of two m-—cycles. This, together with an analysis of genus 0 systems,
gives a fair constraint on possible monodromy groups. However, if we are
working over the rationals, another powerful tool is available, namely the
interplay between the inertia and decomposition groups at ramified rational
places. Such considerations appear already in Shih [65] and Fried [21], see also
[71, Lemma 2.8] and [53, Sect. 1.2.3]. The following lemma summarizes the
necessary properties which are being used most frequently in the following.

Lemma 4.2.1. Let k = Q and g(Z) € Q(Z) be a Siegel function of the
second kind of degree n = 2m > 2, such that g~'(a) consists of two real
elements, which are algebraically conjugate in Q(v/d), for o € P1(Q) and
d > 1 a square-free integer. Let t be a transcendental over Q, L a splitting
field of g(Z) —t over Q(t), A := Gal(L/Q(t)), and G := Gal(L/Q(t)) < A,
where Q 1s the the algebraic closure of Q in L. Consider A as a permutation
group on the roots of g(Z) — t.

Let B be a place of L lying above the place t — « of Q(t). Let D < A
and I < G be the decomposition and inertia group of B, respectively. Then
I = <o> for some o € G, and the following holds.

(a) o is a product of two m—cycles.
(b) o* is conjugate in D to o for all k prime to m.
(¢) D contains an element which switches the two orbits of I.

(d) D contains an involution T, such that o™ = o~ !

of I setwise.

, and T fixes the orbits

(e) If Vd & Q(Cm) (with (m a primitive m—th root of unity), then the
centralizer Cp(I) contains an element which interchanges the two orbits
of 1.
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Proof. Changing the argument of g by a linear fractional substitution over Q
allows to assume that o = co, and that the two elements in the fiber g~*(oc0)
are +v/d for d > 1 square-free. Thus, without loss, assume that 9(Z) =
h(Z)/(Z? — d)™, where h(Z) € Q[Z] with deg(h) < 2m, and h(++V/d) # 0.

Let y be a transcendental over Q, such that y™ = 1/t. Fix a square root
Vd of d, and let € € {—1,1}. Substituting yZ + ev/d for Z in the equation
h(Z)—t-(Z% —d)™ = 0 gives

hyZ +evVd) — Z™(yZ + 2eVd)™ = 0. (4.1)

This latter equation, by Hensel’s Lemma, is solvable in the power series ring
Qlly]l-

Thus, for i = 1,2,...,m and € € {—1,1}, we can represent the 2m roots

of g(Z) — t in the form
Zie — 5\/g + al,sciy + a2,s<2iy2 +--- € @[[y”a

where ( is a primitive m—th root of unity.

Thus L can be regarded as a subfield of Q((y)). Each automorphism of
Q((y)) which fixes y™ = 1/t then restricts to an element in D < A, and if it
is the identity on Q, then the restriction to L lies in I < G.

We will now construct suitable automorphisms of Q((y)) which, when
restricted to L, give the required actions on the roots of g(Z) — t.

To (a). Let 6 € Gal(Q((v))/Q((y™))) with ¢ = Cy. Then the restriction
0 := 6|y, acts as required, sending z; . to z;11 . (first index taken modulo m).

To (b). Let 7 € Gal(Q((y ))/Q(( ))) with ¢* = ¢*, and 7 := 7|,. Then
77lo7 is the identity on Q, but y™ 77 = 37 = (Cy)” = C*y, so 7 loT = oF.

To (c). Choose 7 € Gal(Q((y))/Q((y))) such that Vd = —/d.

To (d). Choose 7 € Gal(Q((y))/Q((y))), such that the restriction of 7
to Q is the complex conjugation for a fixed embedding of Q into C. Then
k = —1 in the notation of case (b).

o (). If v/d & Q((), then there is an element 7 € Gal(Q((y))/Q((%)))
such that 7 moves v/d, but is the identity on Q(¢). Set 7 := #|;. This gives
k =1 in case (b). O

4.3 Monodromy Groups of Siegel Functions

Here is the main result about the monodromy groups of Siegel functions of
the second kind over Q.
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Theorem 4.3.1. Let k = Q and g(Z) € Q(Z) be a functionally indecom-
posable Siegel function of second kind of degree n > 2. Let A and G be the
arithmetic and geometric monodromy group of g, respectively. Let T be the
ramification type of g. Then one of the following holds:

(a) n is even, A, <G < A< S,, many possibilities for T; or
(b) n =16, G =PSLy(5), A=PGLy(5), T = (2,5,3) and (2,2,2,3); or
(¢c) n=6, G=PGLy(5) = A, T =(4,4,3); or

(d) n=8,G=AGCGL3(2) = A, T = (2,2,3,4), (2,2,4,4), and (2,2,2,2,4);
or

(e) n =10, S < G < A < Aut(S), where S = As or As, with many
possibilities for T; or

(f) n =16, G= (S4 X 54) X Cy = A, T= (2,6,8), (2,2,2,8),’ or
(9) n=16,G=CixSs=A,T=(25,8), (2,6,8), and (2,2,2,8).

Proof. Let € = (01,09,...,0,) be a genus 0 system of G, and T its type,
such that o, is the element ¢ from Lemma 4.2.1. So n = 2m, where o, has
two cycles, both of length m.

We denote by L a splitting field of ¢(Z) — ¢ over Q(¢), and if U is a
subgroup of A = Gal(L/Q(t)), then Ly is the fixed field of U in L.

First suppose that A is an affine permutation group. Proposition 3.3.2
gives the candidates for G and A and genus 0 systems. The only possible
degrees are 4, 8, and 16.

Suppose n = 4. If G = Cy x Cy, then T = (2,2,2), and the three
involutions in £ are pairwise not conjugate in G. As A is primitive, A contains
a subgroup C of order 3. This subgroup permutes the elements in £ cyclically.
The branch cycle argument [71, Lemma 2.8], [53, Sect. 1.2.3] shows that the
three branch points of g are also permuted transitively by Gal(Q/Q), in
particular they are all irrational, a contradiction.

The cases G = A, and S, are easily seen to occur.

Next suppose n = 8. The only possible candidate with a genus 0 system
is G = AGL3(2) = A. The rational genus 0 systems in G have type (3,4, 4),
(4,4,4), (2,2,4,4), (2,2,3,4), or (2,2,2,2,4).
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The (3,4,4)-tuple must have all branch points rational. By [51], the
minimal field of definition of such a cover has degree 2 over QQ, so this case
is out.

In the (4,4,4) case, a minimal field of definition has degree 4 over Q if all
branch points are rational. There could possibly be two of the branch points
conjugate, which would lower the degree of the minimal field of definition by
at most a factor 2, so this does not occur as well.

The cases with 4 and 5 branch points all occur, see Section 4.4.

Now suppose n = 16. The only cases where G' has a genus 0 system of
the required form, and o, fulfills the necessary properties in Lemma 4.2.1,
are the ones listed in (m), (n), and (o) of Proposition 3.3.2.

We start excluding the first case, where G; = (C3 x C3) x Cy, and £ has
type (2,4, 8). Here [A : G] < 2. The group G has, up to conjugacy, a unique
subgroup U of index 8. Set U := N4(U). Then A = UG, so the fixed field
Lg is a regular extension of Q(t). Look at the action of A on A/U. With
respect to this action, the elements in £ have cycle types 2 —2, 2 -2 —4, 8.
From that we get that L; has genus 0, and because of the totally ramified
place at infinity, we have L; = Q(x) where t = f(z) with f € Q[X]. Now
A, in this degree 8 action, preserves a block system of blocks of size 4, and
the last element in £ leaves the two blocks invariant. Suppose without loss
that oy corresponds to 0. Then this yields (after linear fractional changes)
f(X) = h(X)? with h € Q[X], where h(X) = X*(X? + pX + p), where the
ramification information tells us that h has, besides 0, two further branch
points which are additive inverses to each other. This gives the condition
27p? — 144p + 128 = 0, so p € Q(v/3) \ Q, a contradiction.

The cases (n) and (o) however have the required arithmetic realizations.
As the proof involves a considerable amount of computations, we postpone
the analysis to Section 4.4.

Now assume that A is an almost simple group. Suppose that A is neither
the alternating nor the symmetric group in natural action. Proposition 3.5.1
lists those cases where a transitive normal subgroup G has a genus 0 system.
In our case, the permutation degree n = 2m is even, and one member o, of
the genus 0 system is a product of two m—cycles. The condition (b) in Lemma
4.2.1, namely that o, is rational in A, already excludes most examples. The
two biggest degrees which survive that condition are n = 22 with G = My,
A = Mgy ¥y and n = 24 with G = A = My,. However, o, violates condition
(d) of Lemma 4.2.1 in both cases.

Excluding the case n = 12, G = Mjy for a moment, the next smallest
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cases with rational o, have degree n < 10. We go through the possibilities
which fulfill the necessary properties from Lemma 4.2.1, starting with the
small degrees.

Let n = 6. Then A = PGLy(5), and G = PSLy(5) or G = PGLy(5). If
G = A, then T = (4,4, 3), and an example is given by

Z4(1322% — 1087 + 225)
(72— 15)?

9(%) =
Next suppose G = PSLy(5). There is the possibility 7" = (2,5, 3), with an
example

9(Z) = 7@(22__5)23),

or T'=(2,2,2,3), where

(72 = 27 +2)(Z2 — 167 + 14)?

9(Z) = 72 =2

is an example.

Let n = 8. Then A = PGLy(7), and [A : G] < 2. First suppose G =
PSLy(7). Then T = (3,3,4). Suppose the required g(Z) exists. Without loss
assume that oo is the branch point corresponding to 3. The two finite branch
points could be algebraically conjugate. But there is a Galois extension K/Q
of degree dividing 4, such that the branch points are in K, and g~'(cc) C K.
So, by linear fractional twists over K, we can pass from g to

(22 +a1Z + a0)(Z% + 1 Z + po)?

g(Z) = 74

If a; # 0, then we may assume that a; = 1. If however a; = 0, then p; =0
cannot hold, because g were functionally decomposable. Thus if a; = 0, we
may assume that p; = 1. Thus we have two cases to consider. Together
with the obvious requirement agpy # 0, and the ramification information in
the other finite branch point, this gives a 0—dimensional quasi affine variety.
See [53, Sect. 1.9] where this kind of computation is explained in detail. By
computing a Grobner bases with respect to the lexicographical order we can
solve the system. We obtain an empty set in the second case, and a degree
4 equation over Q for p; in the first case. However, this degree 4 polynomial
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turns out to be irreducible over Q with Galois group Dy, hence p; € K, a
contradiction.

Now assume G = A. Then T = (2,6,4). The corresponding triple
is rationally rigid and o, has a single cycle of length 6, so there exists a
rational function g(Z) with the required ramification data. Still, we need

to decide about the fiber g7!(c0). We do this by explicitly computing g,
Z8(922%—6Z+49)

T So the fiber g1(c0) is not real, contrary to

getting ¢g(Z) =
our requirement.

Let n = 10. Then S < A < Aut(S) with S = A; or S = Ag. In view of
the results we want to achieve, there is little interest in investigating these
cases more closely. But see Example 5.2.11 for the case S = As.

Finally, we have to rule out the case n = 12, G = A = Mj3;. We have
the following possibilities for T: (2,5,6), (3,4,6), (3,3,6), (4,4,6), (2,6,6),
(2,8,6), and (2,2,2,6).

In the cases with three branch points, explicit computations are feasible,
and it turns out that only the two cases (3,3,6) and (4,4,6) give Galois
realizations over Q(t). However, in both cases the subfields of degree 12 over
Q(t) are not rational. Indeed, in the first case, we get the function field of
the quadratic X? +Y?2 +1 =0, and in the second case, the function field of
the quadratic X2 4+ 3Y2 +5 = 0. In Section 4.4 we give explicit polynomials
over Q(t) of degree 12 with Galois group M;, and ramification type (3,3, 6)
or (4,4,6), respectively. However, a variation of the argument below could
be used as an alternative.

So we need to worry about the ramification type T = (2,2,2,6). The
criterion in Lemma 4.2.1 is too coarse in order to rule out that case. However,
we still get rid of this case by considering the action of complex conjugation,
and what it does to a genus 0 system. Let £ be a genus 0 system of type
T, and suppose that a function g(Z) exists as required. By passing to a
real field k£ containing g~ (00), we may assume that g(Z) = h(Z)/Z°, where
h|Z] € k[Z] is a monic polynomial of degree 12 and h(0) # 0. If A(0) < 0,
then h(Z) — t,Z® has exactly 2 real roots for 5 < 0 (by a straightforward
exercise in calculus). However, M, does not have an involution with only 2
fixed points, so this case cannot occur.

Thus h(0) > 0. Then, for ¢, > 0, h(Z) — t,Z® has precisely 4 real
roots. Choose such a ty € k with Gal(h(Z) — t,Z%/k) = My5. By a linear
fractional change over k, we can arrange the following: ¢, is mapped to %,
the branch points of the corresponding rational function g are all finite, and
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the real branch points of § are smaller than ;. Let ¢, be the base point
of a branch cycle description o = (01, 09, 03,04) coming from the “standard
configuration” as in [53, Sect. I.1.1] or [23, §2]. Note that the order of the
conjugacy classes here must not be chosen arbitrarily. So the element of
order 6 is one of the o;. As k C R, complex conjugation p leaves the set of
branch points invariant, but reflects the paths at the real axis, inducing a
new branch cycle description ¢”. For instance, if all branch points are real,
we get

o = (o7 (05 1), (03 )72 71 (o )78 o o),

and a similar transformation formula holds if there is a pair of complex
conjugate branch points. For this old result by Hurwitz , see [53, Theorem
[.1.2], [23].

Identify the Galois group Gal(§(Z) — t/k(t)) with Gal(§(Z) — ty/k), so
that they are permutation equivalent on the roots of §(Z) —t and §(Z) — o,
respectively. Let ) be the complex conjugation on the splitting field of §(Z)—
to. Then, under this identification, 0% = . (Here 0¥ means simultaneously
conjugating the components with ¢.) This is a result by Deébes and Fried,
extending a more special result by Serre [64, 8.4.3] (which does not apply
here), see [23] and [53, Theorem 1.10.3].

Now, for instance using GAP, one checks that in all possible configurations
for o and possibilities of real and complex branch points, an element v as
above either does not exist, or is a fixed point free involution. However, as
we have chosen %, such that §(Z) —#, has precisely 4 real roots, the case that
¥ has precisely 4 fixed points should also occur. As this is not the case, we
have ruled out the existence of M, with this specific arithmetic data. OJ

The analogue of the previous theorem for Siegel functions of the first
kind follows immediately from [54] and the observation that primitivity of A
implies primitivity of GG, see Proposition 3.6.1.

Theorem 4.3.2. Let k = Q and g(Z) € Q(Z) be a functionally indecom-
posable Siegel function of first kind of degree n > 2. Let A and G be the
arithmetic and geometric monodromy group of g, respectively. Let T be the
ramification type of g. Then one of the following holds:

(a) n is a prime, C, = G < A= AGLy(n), T = (n,n); or
(b) n >3 is a prime, D, =G < A=AGL(n), T = (2,2,n); or
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(c) n>4, A, < G < A<S,, many possibilities for T; or
(d) n=6, G =PGLy(5) = A, T =(2,4,6); or

(e) n=9,G=PILy(8) = A, T = (3,3,9); or

(f) n=10, G =PTLy(9) = A, T = (2,4,10).

4.4 Computations

This section completes the proof of Theorem 4.3.1 in those cases which require
or deserve some explicit computations besides theoretical arguments. We
continue to use the notation from there.

4.4.1 n=38, G =AGLs2).

Here n = 8, and G = A = AGL;3(2). We have already seen that the only pos-
sible ramification types could be T' = (2, 2,2, 2,4), (2,2,4,4), and (2,2, 3,4).
We will establish examples for all three cases. While deriving possible forms
of g(Z) we do not give complete justification for each step, because the re-
quired properties of g(Z) can be verified directly from the explicit form. Thus
the description of the computation is only meant as a hint to the reader how
we got the examples.

In the construction of examples we employ a 2-parametric family of poly-
nomials of degree 7 over Q(¢) with a (2, 2, 2, 2, 4) ramification type and Galois
group PSLy(7). This family is due to Malle, see [52]. Define

fo,p(X) = (X +2(5 - 1)X;;}§a—+2)52 —48)X — 20)

(X* —2(B+2)X*+ 48X — o).

One verifies that for all (o, 3) € @ in a non—trivial Zariski open subset
of @, the following holds: f, s has arithmetic and geometric monodromy
group PSLy(7) with ramification type (2,2,2,2,4). The elements of order 2
are double transpositions, while the element of order 4 has type 1 — 2 — 4.
We take the composition f, g(r(X)), where r € Q(X) has degree 2, and
is ramified in 0 and 1. Multiplying r with a suitable constant (depending
on « and f), one can arrange that the discriminant of the numerator of
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fap(r(X)) —t is a square. This can be used to show that the arithmetic
and geometric monodromy group of f,s(r(X)) is AGL3(2) in the degree
14 action. One can now pass to the fixed field E of GL3(2) < AGL3(2) in a
splitting field L of f, g(r(X))—t over Q(¢). A minimal polynomial F, 3(X,t)
for a primitive element of E/Q(t) can be computed, we do not print it here
because it is very long. For that we used a program written by Cuntz based
on KASH[9] which computes subfields in algebraic function fields.

It turns out that the degree in ¢ of F, (X, t) is 2. So we can easily derive
a condition for the genus 0 field E to be rational. In this case, we get that
F is rational if and only if —a is a sum of two squares in Q. For instance,
the choice a := —1/2, f =1 yields

2) (132% + 6023 + 10022 + 727 + 20)(112* + 823 — 127% — 16 Z + 12)
9(Z) = :

(27~ 2y

Next we want to see how to get the cases with 4 branch points. Let A, (%)
be the discriminant of a numerator of f, 3 —t with respect to X. A necessary
condition for having only 4 branch points is that the discriminant of A, s(t)
with respect to ¢ vanishes. This gives a condition on « and 3, and if one
performs the computation, it follows that this condition is given by the union
of two genus 0 curves which are birationally isomorphic to P'(Q) over Q. For
the computation of such a birational map, we made use of the Maple package
algcurves by Mark van Hoeij (available at http://klein.math.fsu.edu/ hoeij,
also implemented in Maple V Release 5).

An example for the ramification type (2,2,4,4) is

(322 — 157 + 20) 22

9(Z2) = 72— 5) :

whereas

(1122 + 307 + 18)(32? + 30Z — 46)*

g(Z): (Z2_2)4

is an example of ramification type (2,2, 3,4).

4.4.2 n = 16, G = (54 X 54) X 02

Here n = 16, and G = A = (S4 % S;) x Cs in product action of the wreath
product Syt Cy. First suppose that £ has type (2,6,8). There are two such
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possibilities, both being rationally rigid. The first has fine type (2 —2 —2 —
2,3—6—6,8—38), and the second one has fine type (2—2—2-2—-2-2,2—-3—
3—6,8—8). From this we can already read off that there is a rational function
9(Z) € Q(Z) of degree 16 and the ramification data and monodromy groups
given as above. Let o3 correspond to the place at infinity. One verifies that
the centralizer C4(03) is intransitive, so ¢ '(c0) C K U {oo}, where K is a
quadratic subfield of Q((s), so K = Q(v/—1), K = Q(v/—2), or K = Q(+/2).
The first two possibilities cannot hold, because complex conjugation would
yield an involution in A, which inverts o3, and interchanges the two cycles of
os. One verifies that such an element does not exist. Let D be the normalizer
in A of I := <o3>. Then D contains a decomposition group D of a place of
L lying above the infinite place of Q(¢). Also, [D : I] > 4 by rationality of o3.
On the other hand, [D : I] = 4. Thus D = D. But D interchanges the two
cycles of a3, so the elements in g7!(c0) cannot be rational. This establishes
the existence of g of the required type.

In this situation, we were lucky that theoretical arguments gave a positive
existence result. However, it is also quite amusing to take advantage of the
specific form of A and compute an explicit example from the data given here.

Recall that G = A = 5S4 Cs is in product action. To this wreath prod-
uct there belongs a subgroup U of index 8, which is a point stabilizer cor-
responding to the natural imprimitive action of A. The fine types of the
two (2,6, 8)-tuples with respect to this degree 8 action are (2,2 — 6,8) and
(2—2—-2-2,2—3,8), respectively. One verifies immediately that Ly is a
rational field, indeed Ly = Q(z), where ¢t = h(z)? with h € QX]. The idea
is to compute this field, and then extract from that the degree 16 extension
we are looking for.

In the first case, we may assume h of the form h(X) = X3(X —1), whereas
h(X) = X3(X — 8) + 216 (note that h(X) +216 = (X —6)*(X* +4X +12))
in the second case.

We have h(z)? = t. Set y := h(x), and let =’ be a root of h(X) = —y.
Then also h(z")? = t. However, z+z' is fixed under a suitable point stabilizer
of A with respect to the degree 16 action of the wreath product S;? Cs in
power action.

Take the first possibility for h. Using resultants, one immediately com-
putes a minimal polynomial H(W,t) of w := z + 2’ over Q(¢):

HW,t) = W' —8W™ 4+ 27W™ — 50W" 4 5512 — 36W* + 13W™°
—oW?® 4+ 136tW?8 — 544t W7 + 892tW'S — 744t WS + 315¢tW*
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—54tW?3 + 16¢2.

Here, however, ¢ appears quadratic, so this does not immediately yield the
function g we are looking for. However, it is easy to write down a parametriza-
tion for the curve H(W,t) = 0:

Z(2Z +3)
W=—"2"3
1 Z25(Z +2)5(2Z + 3)?
= —— =:9(2).
=TT (22 9(2)

The function g(Z) parameterizing ¢ is the function we are looking for.
Similarly, the second possibility of h gives a function

(224 4Z+6)(Z —2)*(32% —4Z + 2)3
g(Z) - (Z2_2)8 '

By Proposition 3.3.2, there is, for this setup, also the possibility of a
(2,2,2,8) system. This is no longer rigid. But even if we could show, for
instance using a braid rigidity criterion as in [53, Chapt. III], the existence
of a regular Galois extension L/Q(t) with the correct data, we would not be
able to decide about rationality of the degree 16 subfield we are after. The
following computations will display the problem.

With s € Q arbitrary set h(X) := X*+25X?+ (85 +32) X +s? —4s—24.
One verifies that the splitting field of h(X)?—t over Q(¢) is regular with Galois
group A, and that we have the ramification given by the (2,2,2,8) system,
provided that s ¢ —4,—3,—12. (The cases s = —3 and s = —12 give the
first and second possibilities from above, whereas for s = —4 the monodromy
group of h is D, rather than S;.) Again, let z be with h(z)? = ¢, and 2’
be with h(z') = —h(z). As above, derive a minimal polynomial H(W,t) for
x + ' over Q(t). One calculates that the curve H(W,t) = 0 is birationally
isomorphic to the quadratic U2 — 2V? = 4s + 16. Of course, it depends on s
whether this quadratic has a rational point, which in turn is equivalent that
Ly (U from above) is a rational function field. But if one chooses s such that
45 + 16 = u2 — 2v for ug, vy € Q, then Ly is rational, and from the explicit
choice of a rational point on the quadratic we get g(Z), parameterized by
(ug, vp), where two such pairs give the same function if u2 — 202 = uj* — 2v}”.
Up to the details which are routine, this shows that the ramification type
(2,2,2,8) appears as well.
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4.4.3 n=16,G = Cjy x S;

Now G = A = (Cj x S5, where the action of S5 is on the Ss—invariant
hyperplane of the natural permutation module for S5 over Fy. We verify that
the genus 0 systems of type (2,5,8) and (2,6, 8) are rationally rigid, also, it
follows from the ramification type, that the degree 16 field we are looking
for is rational. As in the previous case, we can recognize the decomposition
group (belonging to the inertia group I := <o3>) as the normalizer of  in A,
and from the properties of N4 (I) we can read off, exactly as in the previous
case, that g(Z) = h(Z)/(Z? — 2)® exists as required.

Explicit computation is different from the previous case. Suppose we
have the ramification type (2,5,8). As an abstract group, A = V x S;,
where V' < T is the hyperplane of vectors with coordinate sum 0, and Sj
permutes the coordinates naturally. This interpretation of A as a subgroup
of the wreath product Cy 1S5 gives an imprimitive faithful degree 10 action
of A. Let U be the corresponding subgroup of index 10. One verifies that
Ly is the root field of h(X?) — ¢, where h(Y) = (Y —1)3/Y. Let y; be the
roots of h(Y) —t¢, i = 1,...,5, and for each i, let x; be a square root of
Yi. Set w = 1 + x9 + - - - + x5. We compute a minimal polynomial H (W, t)
for w. Namely consider H(W,t) := [[(X + €121 + €222 + - - - + €525), where
the product is over ¢; € {—1,1}, such that the sum of the entries for each
occuring tuple is 0. Obviously, H(w,t) = 0, and H(W,t) € Q[W,t]. As to
the practical computation, we computed the solutions of h(X) —t in Laurent
series in 1/¢'/® around the place with inertia group order 5. Eventually, after
calculations similar as above, we get

(Z—1)(22+Z — 1)
(=2

9(Z) =

If the ramification type is (2, 6, 8), then L is the splitting field of h(X?)—t,
with A(Y) = (2Y? — 27)2(Y? — 1)3/Y?, and after similar computations we
get

(522 + 47 —10)(Z + 2)*(52% — 127 + 6)?
(22 —2)8 '

9(Z) =

Also, the case (2,2,2,8) is not hard to establish by the procedure de-
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scribed above. An example (as part of a 1-parameter family) is

(2) = (152* — 7423 + 14022 — 1247 + 44)°
T (722

(4778 — 47277 +19122° — 42727° + 4840 2" — 1824 72° — 2887 — 647 — 16).

4.4.4 n = 12, G = M12

In order to rule out the ramification types T' = (3,3,6) and (4,4,6), we
computed explicitly polynomials F(X,t) of degree 12 over Q(¢), such that
the splitting field L has Galois group M;s over Q(¢), and the ramification
type T. From the explicit form of F(X,t) we can read off that a degree
12 extension E in L of Q(¢) cannot be a rational field. Nowadays such
computations are routine, so we just give the polynomials.

For T = (3, 3,6) we obtain

F(X,t) = X24+396X" +27192X° +933174X°® 4 20101752X " +
(=2t + 169737744) X°® + 163302408725 +
(8820¢ + 538400028969) X * + (92616t + 8234002812376) X > +
(—3895314t 4 195276967064388) X2 +
(—48378792t + 3991355037576144) X +
t? + 62267644t + 30911476378259268,

and for T = (4,4,6) we get

F(X,t) = X" +44088X" +950400X° + 721955520X® +
31696106112X7 + (2t + 5460734649920) X °® +
393700011065856 X ° +
(—120180¢ + 20231483772508800) X * +
(—2587680¢ + 911284967252689920) X3 +
(137561760t + 21295725373309787136) X 2 +
(4418468352t + 183784500436675461120) X +
t* + 31440107840t + 3033666001201482093568.

As t is quadratic in both cases, it is easy to compute a quadratic () such
that FE is the field of rational functions on ). Then F is rational if and only
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if @ has a rational point. However, in both cases there is not even a real
point on (). This actually indicates that the argument we used to exclude
T = (2,2,2,6) might be applicable here as well. One can verify that this is
indeed the case.

4.5 Davenport Polynomials

Let A be a finite group. Let U and V be subgroups of A which are not
conjugate, and xy, xv be the permutation characters of the action of A on
the coset space A/U and A/V, respectively. Then U and V are said to be
Kronecker conjugate if xy(a) > 0 if and only if xy(a) > 0 for each a € A.
This group theoretic property appeared for the first time in work of Kronecker
[41]. If xu = xv, clearly a stronger property, then U and V are said to be
arithmetically equivalent. See [40] for a recent book on this subject.

Let k be a number field and O, be the ring of integers of k. Let f(X), g(Y)
be polynomials over k, and ¢ a transcendental over k. Let x and y be in
an algebraic closure of k(t) with f(x) = ¢g(y) = t. Let L be the normal
closure of k(z,y)/k(t), and set A := Gal(L/k(t)), U := Gal(L/k(x)), V =
Gal(L/k(y)). We apply the group theoretic terms defined above to f and g,
if the corresponding property holds for A, U, V.

By a well known result of Fried (see [20, Section 2], [24, 19.27], or [56,
Theorem 2.3] for an improved statement and simpler proof), Kronecker con-
jugacy of f and g is equivalent to the following arithmetic property: For all
but finitely many prime ideals p of O, the following equality of value sets
on residue fields holds: f(O/p) = g(Ok/p), but f, g do not differ by a linear
substitution over k.

Following Fried, we say that such a polynomial f(X) € k[X] is a Daven-
port polynomial.

Fried gave a close study of Davenport polynomials which in addition
are assumed to be functionally indecomposable. If this holds for f, then it
is not hard to see that there is g(X) € k[X] such that f and g are even
arithmetically equivalent.

The original question of Davenport was whether there are Davenport
polynomials over the rationals. Fried [19] gave a nice argument, without
using any deep group theoretic classification results, that there are none:

Proposition 4.5.1. There are no functionally indecomposable Davenport
polynomials over Q.
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(This was extended in [56] to composition length 2. For composition
length 3, however, there are already Davenport polynomials over Q.)

Without restriction on £, one can read off the possible monodromy groups
of indecomposable Davenport polynomials directly from Proposition 3.6.1.
A part of this Proposition had been proved by Feit [16]. (See [54] for a
variant avoiding the use of a false lemma in [16].) This result relies on
the classification of the finite simple groups (which was not completed at
that time; but a consequence of it, the list of doubly transitive permutation
groups, was believed to be complete). Only the groups listed in part (b) of
Proposition 3.6.1 admit a subgroup which is Kronecker conjugate (and indeed
arithmetically equivalent) to a point stabilizer. In particular, indecomposable
Davenport polynomials exist only for the degrees 7, 11, 13, 15, 21, 31.
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Chapter 5

Results, Proofs, and Examples

In this final chapter we state and prove the main results of our work. Through-
out this chapter, let k£ be a number field, and f(X,?) € k[X,?] be an irre-
ducible polynomial of positive degree n in X. Let Oy be the ring of integers
of k. Set R := {to € O|f(X,tp) is reducible over k}, and L = {t; €
Ok|f(X, %) has a root in k}. So clearly £L C R.

It follows easily from Siegel’s Theorem [66] that L is finite if the genus of
the curve f(X,t) = 0 is positive. (If the polynomial f(X,t) is not absolutely
irreducible, then L is finite anyway, though R need not be finite, see Remark
1.3.3)

Our purpose is to show finiteness of R \ £ under rather general assump-
tions, and also to exhibit interesting examples where R \ £ is infinite. We
consider £ = QQ as the case of main interest, but also display the results for
general number fields.

5.1 Cofiniteness of Hilbert Sets

This section contains positive results in the sense that we show finiteness
of R (or of R\ L if the genus of f(X,t) = 0 is 0) under rather general

assumptions.

Theorem 5.1.1. Let A be the Galois group of f(X,t) over k(t) in its action
on the roots of f(X,t). Then R\ L is finite, if one of the following conditions
18 fulfilled.

(a) k=Q, degx(f) is a prime # 5.
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(b) degy(f) is a prime #5,7,11,13,31.

(c) degx(f) € {7,11,13,31} and f does not come from a Davenport poly-
nomial as described in Example 5.2.10. This holds in particular if the
genus of f(X,t) =0 is positive.

(d) degx(f) =5 and f does not come from the construction given in Ez-
ample 5.2.11. This holds in particular if the genus of f(X,t) = 0 is
positive.

(e) A is the alternating or symmetric group in its natural action, and

degx (f) # 5.
(f) k=Q, A is a simple group not isomorphic to an alternating group A,

(9) A is a simple group not isomorphic to an alternating group A, or
PSLy(7), PSLy(11), PSLy(13), PSLy(3), PSLy(3), PSL5(2), My, Mya,
M227 M237 M24'

(h) k = Q, A acts primitively, and has a non—abelian composition factor
which is not isomorphic to A; (7 > 5), PSLy(7), or PSLy(8).

(i) A acts primitively, and has a non-abelian composition factor which is
not isomorphic to A; (j > 5), PSLo(7), PSLy(8), PSLy(11), PSLy(13),
PSL;(3), PSL3(4), PSL4(3), PSL5(2), PSLs(2), M1y, Mia, Mo, Mas,
Moyy,.

Proof. Suppose that R \ £ is infinite. Then clearly n > 4. Let ¢;(Z) € k(2)
be the rational functions from Proposition 1.1.2. It follows from Proposition
1.1.2(a) and |R \ £| = oo that the polynomial f(X, g(z)) does not have a
factor of degree 1 over k(z) for at least one g = g;. Fix this rational function
g. We are going to use Lemma 1.2.1 and the notation introduced there. It
follows that A, is not conjugate to a subgroup of A, in A.

We start by assuming that degy(f) is a prime p. Choose a subgroup
B < A such that A, is a maximal subgroup of B. Set W := A, N B. Note
that [B : W] = p, and that the actions of B on the coset spaces B/A,
and B/W are faithful by Lemma 1.2.1(d) and (f). Let 7, and m, be the
corresponding isomorphisms, where 7,(B) and 7,(B) are the permutation
groups B acting on B/A, and B/W , respectively.

Note that the group B is not solvable, for if it were, then C, < 7,(B) <
AGL;(p). But 7,(A,) is a maximal intransitive subgroup of 7, (B), so m,(A,)

102



5.1. COFINITENESS OF HILBERT SETS

is conjugate to 7, (W), and therefore A, is conjugate to the subgroup W of
A;, a contradiction. (See [57, Lemma 5.5] for the elementary facts about
AGL; (p) implicitly used here.)

By a theorem of Burnside (see [31, I1.3.6]) any transitive non-solvable
permutation group of prime degree is doubly transitive. Thus 7, (B) is doubly
transitive. Write ¢(Z) = a(b(Z)) with a,b € k(Z), such that K(b(z)) is
the fixed field of B. Set y := b(z). As g is a Siegel function, either b is
a Siegel function, or a composition of Z™ with linear fractional functions
over k, see Lemma 4.1.4. The latter case does not occur, for then 7,(B) =
Gal(b(Z) — t/k(t)) < AGL;(m) were solvable.

Thus there is a € P! (k) with [b7'(a)| < 2. We may and will assume that
a = 00. Let 0 € m,(B) be an inertia generator belonging to the place y — oo
of k(y).

First consider the case [b~!(c0)| = 1, so b is (up to a composition with
linear fractional functions over k) a polynomial, and <o > is transitive on the
roots of b(Z) —y. As b is functionally indecomposable, so 7,(B) is primitive,
it follows from a theorem of Schur [73, 25.3] that 7,(B) is doubly transitive.
Now use Lemma 5.1.3 below and the fact that A, W G B (Lemma 1.2.1(c))
to conclude that the permutation characters of m, and 7, are the same. In
particular, k(y, z) has genus 0, and as 7,(0) is a transitive cycle by equality
of permutation characters, k(y, z) is a rational function field k(v) and there
is a polynomial b(Z) € k[Z] with b(v) = y. In the terminology of Section 4.5,
b and b are arithmetically equivalent. Such pairs do not exist if £ = Q, see
Proposition 4.5.1, and do exist of prime degree p only for p = 7,11, 13, and
31, see Section 4.5. In all these cases, the degree p group m,(B) is contained
in A,, and as such it is a maximal subgroup. It follows from (e) proved below
that A cannot act as alternating or symmetric group on A/A,. Therefore
A = B, and the possibilities are of the form as given in Example 5.2.10.

Next suppose |b™!(c0)| = 2, so b is a Siegel function of the second kind.
If k¥ = Q, then conclude p = 5 as in [57]. Thus allow k to be arbitrary.
Note that p divides |B|, because [B : W] = p. On the other hand, p does
not divide |A,|, because an element in A, of order p would be a transitive
cycle on B/W, contrary to A,W & B. Therefore p divides [B : A,]. We
saw already that 7,(B) is a doubly transitive non—solvable group. Therefore
7z(B) is almost simple by a theorem of Burnside, see [73, Exercise 12.4]. So
7,(B) is almost simple as well, and primitive by maximality of A, in B. This
primitive group 7,(B), as an arithmetic monodromy group of b(Z), contains
a transitive normal subgroup admitting a genus 0 system with o being part
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of it. Proposition 3.5.1 classifies the possibilities. Except for A5 and S5 in
the degree 10 action, all examples are doubly transitive. Suppose that 7,(B)
is doubly transitive. By Lemma 5.1.3 below, the degree of 7,(B) is p as well.
The only prime degree cases are for A, or S, in the natural action. However,
these groups have a unique conjugacy class of subgroups of index p, so they
do not occur.

Thus 7,(B) = As or S5 in the degree 10 action. The only intransitive
subgroup of prime index in Aj or Sy is the stabilizer of the natural action,
thus p = 5. See Example 5.2.11 for a discussion of this case. These arguments
finish the cases (a), (b), (¢), and (d).

Now we prove (e), so A acts naturally as an alternating group A4, or
symmetric group S, on A/A,. As the action of A, on A/A, is intransitive
with orbit lengths > 2, we get that A, stabilizes an m—set of A/A,, where
2 <m < n-—2. Apermutes transitively the m—sets of A/A,, therefore there
is a subgroup B with A, < B < A, such that the action of A on A/B is
equivalent to the action on the m-sets of A/A,. The existence of 0 € A
having at most two cycles on A/B implies n < 5 (see Section 2.8.1, the part
where A, is intransitive). So n = 4, because n = 5 is excluded here. The case
n = 4 does not exist for £k = Q. For if it would exist, o were a product of two
3-cycles (because Sy has no elements of order 6). However, the normalizer
of <o> in A stabilizes the two orbits of <o >, contrary to Lemma 4.2.1(c).

Now let us prove (f) and (g). Note that if A = C), a cyclic group of prime
order, then clearly R = £. Thus assume that A is not abelian. Let B > A,
be a maximal subgroup of A, and ¢ € A be an inertia generator belonging
to the place t — oo. So o has at most two cycles on A/A,, and therefore
also at most two cycles on A/B. By Theorems 4.3.1 and 4.3.2, there are
no possibilities if £ = Q; and if £ is arbitrary, apply Propositions 3.5.1 and
3.6.1.

Finally, we show (h) and (i). By faithful action of A on A/A, and A/A,
(Lemma 1.2.1(d) and (e)) and Gal(f(X,t)/k(t)) = A, we get the composition
factors of A once we know the composition factors of Gal(g(Z) — t/k(t)).
Let g(Z) = g1(g2(---9-(Z))...) be a decomposition of ¢ into functionally
indecomposable rational functions ¢;(Z) € k(Z). Then each composition
factor of Gal(g(Z) —t/k(t)) is a composition factor of Gal(g;(Z) —t/k(t)) for
a suitable ¢, see Glauberman’s argument in [27, Prop. 2.1] for this fact which
is less obvious than it might appear at a first glance.

By Lemma 4.1.4, each g; is either a Siegel function or a linear fractional
twist (over k) of a cyclic polynomial Z™. In the latter case, Gal(g;(Z) —
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t/k(t)) is solvable, so does not contribute non—abelian composition factors.
If however g; is a Siegel function, then apply Theorem 4.3.1 and 4.3.2 for
k = @Q, and Propositions 3.3.2, 3.4.1, 3.5.1, and 3.6.1 otherwise. O

A consequence of part (f) of the previous theorem is

Theorem 5.1.2. Let f(X,t) € Q[X,t] be irreducible with Galois group G,
where G is a simple group not isomorphic to an alternating group or Cs.

Then Gal(f(X,t)/Q) = G for all but finitely many specializations ty € Z.

Proof. Let F(X,t) be a minimal polynomial of a primitive element of a split-
ting field L of f(X,t) over Q(¢), and x a root of F'(X,t). Without loss assume
that F(X,t) € Z[X,t] is monic in X. By Theorem 5.1.1(f), there are only
finitely many ¢, € Z such that F'(X, %) is reducible without a linear factor.
Suppose the theorem is wrong. Then there are infinitely many integers %,
such that F(X,to) has a rational root. Thus, by Siegel’s theorem (see the
proof of Proposition 1.1.2), there is z € L such that L = Q(z) with ¢t = g(2),
where g(Z) € Q(Z) is a Siegel function. In particular, the group G contains
a genus 0 system with respect to the regular action. But this is classically
known (and very easy to prove) to occur only for the groups C,, D,,, Ay, Sy,
and A;. By the assumption on G, only G' = C,, for a prime p > 3 could be
a possibility, and G would be a Siegel function of the first kind. However,
this case is out too, because G = AGL;(p) by rationality in G of an inertia
generator belonging to the place ¢ — oo (see Theorem 4.3.2). O

Above we used the following elementary observation. For the convenience
of the reader we include the easy proof from [57] which replaces the usual
use of character theory by the Cauchy—Schwarz inequality.

Lemma 5.1.3. Let G be a finite group with subgroups H, and H,, such that
H,H, ; G, and the actions of G on the coset spaces G/H, and G/H, are
doubly transitive. Let x; be the permutation character of the action of G on
G/H;. Then x1 = X2, so in particular |G : H| = [G : Hy).

Proof. As G is doubly transitive on G/ H;, it follows easily that > geq Xi (9)* =
2|G|, see [25, 2.7.4(i)]. Note that xixo is the permutation character of
the action of G' on the cartesian product G/H; x G/H,. The assumption
H H, g G implies that G has at least two orbits on this product, therefore

105



CHAPTER 5. RESULTS, PROOFS, AND EXAMPLES

> gea X1(9)x2(g) > 2|G|. Together with the Cauchy-Schwarz inequality we
obtain

4GP < O xil@)xe(9)? <D x1(9)2 Y xelg)? = 4G

geG geq geqG

As we obtain equality, there is a constant s such that x;(g) = sx2(g) for all

g € G. But
G| = ZXl(g) = ZXQ(Q) = SZXl(Q) = s|G|,
geaG geaG geG
so s = 1. The claim follows. O

5.2 Failure of Finiteness Property

The collection of examples in this section should make clear that, in a certain
sense, Theorems 5.1.1 and 5.1.2 are optimal.

Example 5.2.1. We show that the analogues of the parts (a) and (f) of
Theorem 5.1.1 as well as Theorem 5.1.2 are wrong for rational specializations.
For instance, take

(Z4 =323 —Z+4)(Z° - Z +1)
72(Z - 1)

from [53, Appendix, Table 5]. Then the splitting field L of g(Z) — ¢ over
Q(t) is a regular extension with group A = GL3(2). Let A, be the stabilizer
of a root of g(Z) — t. If we identify A, with the upper triangular matrices
of A, then let A, be the group of lower triangular matrices, and z € L
be a primitive element of the fixed field of A,. Let f(X,t¢) be a minimal
polynomial of z over Q(¢). Computing the orbit lengths of A, on A/A,, we
obtain that f(X,g(Z)) factors over Q(Z) into absolutely irreducible factors
of degrees 3 and 4. These factors remain irreducible by Hilbert’s irreducibility
theorem for infinitely many rational zy. Thus, while f(X, ) has Galois group
GL3(2) = PSLy(7) over Q(t), the polynomial f(X,t;) becomes reducible
without a linear factor for each ¢y = g(zg) for such z.

9(Z) =

The following easy construction shows that the analogue of Theorem
5.1.1(a) is false for each non—prime degree > 4. A similar example has been
given by Débes (personal communication).
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Example 5.2.2. Let n = wv with u,v > 1 integers. Choose h(Y,Z) €
Q[Y, Z], such that h(Y, Z) is absolutely irreducible, has positive genus, and
degree u with respect to Y. Let ¢ be a variable, z be a root of Z¥ — ¢, y be a
root of (Y, z), and x be a primitive element of Q(y, z)/Q(t). Let f(X,t) be
the minimal polynomial of z over Q(t).

Then f(X,t) is irreducible over Q(¢) of degree n in X, and f(X,ty) has a
rational root for only finitely many integers ¢, whereas f(X, o) is reducible
for each v—th power ¢y of an integer.

Remark 5.2.3. In the previous example, the Galois group A of f(X,t) over
Q(t) acts imprimitively on the roots of f(X,t). In general, without the
primitivity assumption on A, we get little restrictions on A if |R \ £| = oc.
The reason for this failure is that A is no longer a homomorphic image of a
monodromy group of a Siegel function. Actually, for each finite simple group
S which occurs regularly over Q(¢), we can construct by a variant of this
method an example over Q, where S is a composition factor of A, but R is
infinite (and £ is finite).

In order to construct further examples where the finiteness result fails,
we need

Lemma 5.2.4. Let k be a number field, and f;(X,Z) € k(Z)[X] be finitely
many trreducible polynomials. Suppose that k has an infinite group of units.
Then the polynomials f;(X,u) are irreducible for infinitely many units u.

Proof. For each i let e; be the smallest positive integer e such that f;(X, Z)
has a root x in the Puiseux series field k((Z'/¢)). It is well-known that the
group of units of Oy is finitely generated. Let u be a base element of a
complement to the torsion part of the group of units. It is easy to see that
T¢ — u then is irreducible over k for each e € N. Let e be the product of
the e;. An easy argument (or see [10, Prop. 3]) shows that the polynomials
fi(X,uZ®) are irreducible. By construction, each f;(X,uZ¢) now has a root
in the Laurent series field k((Z)). By a tightening of Hilbert’s irreducibility
theorem due to Débes [11, Cor. 1.6(b)], the polynomials f;(X,u!*7¢) are
irreducible for all but finitely many integers j. The claim follows. 0J

Lemma 5.2.5. Let k be a number field, f(X,t) € k[X,t] be irreducible, and
9(Z) € k(Z) of one of the following forms:

(a) 9(Z) € O|Z]; or
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(b) 9(Z) = h(Z)/Z™, where h(Z) € O[Z] has degree 2m and h(0) # 0,
and Ok has an infinite group of units; or

(c) k=Q, g(Z) = h(Z)/(Z? — d)™, where h(Z) € Z[Z] is a polynomial
of degree < 2m with h,(i\/a) # 0, and d > 1 is a square—free integer.
Furthermore, assume that each absolutely irreducible factor f;(X,Z) of
f(X,9(Z)) has the following property: If x is a root of f;(X,Z), then
C(Z,2)/C(Z) has a ramified place Z — o € P1(C) with a # +/d.
(This holds in particular if f;(X,Z) =0 has positive genus.)

Suppose that f(X,g(Z)) is reducible over k(Z), but does not have a factor
of degree 1. Then f(X,to) is reducible for infinitely many integers to € Oy
without a linear factor.

Proof. Let f(X,9(Z)) =] fi(X, Z) be a decomposition into irreducible fac-
tors f;(X, Z) € k(Z)[X].

Case (a) is easy. The multi—polynomial version of Hilbert’s irreducibil-
ity theorem gives infinitely many integers zo € Ok such that f;(X,z) is
irreducible for each i. Now let ¢y = g(zo) for those z.

Case (b) follows from Lemma 5.2.4.

Case (c) is a little more subtle. Set k := Q(v/d). Then Oy has an
infinite group of units, and from that it follows easily that there are o, 5 € Z
with o? — 3%d = 1, such that v := a + $v/d has infinite multiplicative
order. Let m € N be relatively prime to the degrees (in X') of the absolutely
irreducible factors f;. Let f; be one of these factors, and w; its degree. Then
$:i(X,Y) := fi(X, L5t1V/d) is again absolutely irreducible. We compute the
genus ¢g; of ¢;(X,Y) = 0 using the Riemann—Hurwitz genus formula and
Abhyankar’s Lemma [69, I11.8.9] applied to the two extensions C(z, Y ™) and
C(Y) over C(Y™):

2(mw; — 1+ g;) > 2(m — 1)w; +m.

Here the places at 0 and oo each contribute at least (m — 1)w; to the right
hand side, and the assumption on the ramification gives that C(z,Y)/C(Y™)
is ramified at least at m finite points # 0. The above inequality gives g; >
1+ m/2 — w;. So for m big enough, we may assure that the absolutely
irreducible polynomials ¢;(X,Y") have positive genus.

Thus ¢;(X, u?) has a degree 1 factor over k for only finitely many integers
j by Siegel’s theorem. Write a; + 3;v/d := v/ with ;, 3; € Z. Then of —
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B3d =1, thus
2j J J
u? —1 w —1/ud
= d
2V/dp;
_ %
B
Now, setting ¢ := g(a;/f;), we obtain
2m p, ( %
o; Bimh(3) e
to=g(F) = —5——2 = 7"h(SL) € Z.

Therefore we obtain infinitely many ¢, = g(«;/8;) € Z, such that f(X, %) is
reducible without a linear factor. 0J

Remark 5.2.6. We cannot get a statement in (c) analogous to (b), where
we had no additional assumption on the factors f;. The problem is that there
are irreducible polynomials f;(X, Z) of X-degree > 1, such that f;(X,a/f)
has a linear factor for all rational a, 8 with a4+ $v/d a unit of Q(+/d), an
easy example being d = 3 (mod 4) and f;(X,7) = X% — (Z? — d).

The general approach in applying the previous lemma is as follows. We
choose a Siegel function g(Z) over k, and let L be a splitting field of g(Z) —t¢
over k(t). With A := Gal(L/k(t)), let A, be the stabilizer of a root of g(Z)—t.
Suppose there is a subgroup A, of A such that A, A, ; A, but A, has orbits
of length > 1 on A/A,. Then let f(X,t) be a minimal polynomial over Q(t)
of a primitive element of the fixed field of A,. It follows that f(X, g(Z)) is
reducible over k(Z) without a linear factor. By a linear fractional change
over k, we may assume that we started with g of the form as given in Lemma
5.2.5. Thus g(k) N Ok is an infinite subset of R, and we only have to assure
that infinitely many of these elements are not in L.

If £ = Q, then we classified precisely which primitive permutation groups
can be arithmetic and geometric monodromy groups of Siegel functions. In
the classification over general number fields k£, we only used the necessary
condition about the form of a genus 0 system. Suppose that the permutation
group G admits a genus 0 system, where one of its members has at most
two cycles. Then, by Riemann’s existence theorem (see Section 3.1.1), there
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is a number field & and a rational function ¢(Z) € k(Z) with geometric
monodromy group G and ramification described by the genus 0 system. By
possibly increasing k, we may assume that g7!(oco) = {co} or {0, 00}, k has
an infinite group of units, and g has the form as in Lemma 5.2.5(a) or (b).

Example 5.2.7. In part (e) of Theorem 5.1.1 we got a nice finiteness result
for R in case that the Galois group is an alternating or symmetric group in the
natural action, but nevertheless we excluded alternating composition factors
in the statements of part (f), (g), (h), and (i). The following observation
from [57] makes clear that we have to do so.

Let 2 < k < m — 2 be integers with 2k # m. Then there exists an
absolutely irreducible polynomial f(X,t) € Q[X,t] with deg, f = (T]?) and
IR\ L| = 0o, such that its Galois group over Q(¢) is primitive and equivalent
to the action of S, on the k—sets of {1,2,...,m}.

The construction is as follows, for the details confer [57, Theorem 9.1].
Let g(Z) = Z™ — Z. Then A := Gal(g9(Z) —t/Q(t)) = Si; indeed, there are
m — 1 finite branch points, and the corresponding inertia generators act as
transpositions. Let L be a splitting field of g(Z) — t over Q(¢), and z be a
primitive element of the fixed field of A, := Sy X S,k < Sy It is easy to
see that A, is a maximal subgroup of A (see the proof of [57, Theorem 9.1]).
The stabilizer A, of a root of g(Z) — t has orbit lengths (7~]) and (™, ') on
AJA,. Let f(X,t) be a minimal polynomial of x over Q(¢). Then f(X, g(Z))
is reducible over Q(Z) with two factors of degree > 1, so we get the claim
from Lemma 5.2.5(a).

It is easy to check that the genus of f(X,t) = 0 is positive in the previous
example, so actually |£| < oco. For instance, for the given g(Z), the genus of
f(X,t)=0is 1+ (Z’:)%ﬂ:m_l > 1if m is a prime. If m is not a prime,
then the genus computation is a little messy.

Example 5.2.8. In parts (h) and (i) of Theorem 5.1.1 we proved a strong
finiteness result for polynomials f(X,¢) with primitive Galois group A over
k(t). At a first glance, it might appear that one can do even a little bet-
ter. For instance if £ = Q, we had to include the group PSLy(7) because
there is a degree 8 Siegel function of second kind with monodromy group
AGL3(2) = C3 x PSLy(7). However, AGL3(2) does not have a primitive
permutation representation with point stabilizer acting intransitively with
orbits of length > 1 in the natural degree 8 action. So the obvious possibility
for constructing an example as above fails. Nevertheless, a refined idea will
show that, under the assumption of primitivity of A, the assertion about the
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composition factors of A in Theorems 5.1.1(h) and (i) is optimal. One of the
many possible kinds of construction will be given in the proof of the following

Proposition 5.2.9. Let k be a number field, and S be a non—abelian compo-
sition factor of a Siegel function over k. Then there exists a finite extension
¢ of k, where £ = Q if k = Q, and f(X,t) € £[X,t], such that the following
holds:

f(X,t) is irreducible, the Galois group over £(t) is primitive, and each of
its non—abelian composition factors is isomorphic to S. Furthermore, R is
an infinite set while L is finite. Indeed, for fized S, the genus of f(X,t) can
be made arbitrarily large.

Proof. Let g(Z) be a functionally indecomposable Siegel function over &
whose arithmetic monodromy group has S as a composition factor. It follows
from our classification that S is the only non—abelian composition factor, and
that it is also a composition factor of the geometric monodromy group.

Assume that g(Z) has the form as in Lemma 5.2.5. For this we have to
possibly go from k£ to £ if k¥ # Q. In addition, if k¥ # Q, we choose ¢ big
enough such that the group of units of O, is infinite. Thus g(¢) N O, is an
infinite set. Let J be the arithmetic monodromy group of g(Z) over Z.

For p a prime let H be the Galois group of X? — t over £(t), so H is a
group normalizing C),.

Let y be a variable. The Galois group of (g(Z) —y)? —t over £(t,y) is the
wreath product W := J{ H = J? x H. By Hilbert’s irreducibility theorem,
there are infinitely many yo € O such that (¢g(Z)—yo)? —1 still has the Galois
group W over k(t). Among those yo, choose one such that 0 and oo are not
branch points of g(Z) — yo, and that no two branch points of g(Z) — y, are
mapped to the same point under XP. These general position assumptions
will be helpful in a genus computation below.

Let J; be the stabilizer of a point in the given action of J. Then, as J is
primitive but not regular, the group Wi := J? x H is a maximal subgroup of
W = JPx H, in fact the action of W on the coset space W/Wj is the primitive
product action of the wreath product J U H. Set §(Z) := (9(Z) — yo)?, and
note that [§(£) NO,;| = co. Let L be a splitting field of §(Z) —t over £(t), and
E the fixed field in L of W;. Let n be the degree of g. Then [E : £(t)] = n”.
Let f(X,t) be a minimal polynomial of a primitive element of E//(t). The
stabilizer in W of a root of §(Z) — ¢ has two orbits on W /W, one of length
nP~!, and the other one of length n? — nP~!. Accordingly, f(X, §(Z)) factors
over £(Z) into two factors of degrees n?~! > 1 and n? —nP~! > 1, respectively.
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The assertion now follows from Lemma 5.2.5 once we know that the genus
of f(X,t) = 0 can be made arbitrarily large.

Let us compute the genus of E. We take advantage of the general position
assumptions of the branching locus of §(Z) — ¢ in order to get an easy genus
computation using the Riemann-Hurwitz genus formula. Let o; and o3 be
inertia generators belonging to t — 0 and ¢ — oo, and let 71,...,7 be
inertia generators coming from the branch points of g(Z). Let ind refer to
the action on W/Wj. Then o; has precisely n fixed points, and moves the
remaining n? —n points in p—cycles. Thus ind(0;) = (n? —n)(1—1/p). If the
inertia generator belonging to 7; has orbit lengths vy, vy, ..., vs on the roots
of g(Z)—t, then 7; has the same orbit lengths on W/W, but each one occurs
nP~! times. As ¢(Z)/¢(g(Z)) is an extension of genus 0 fields, we obtain

r

Y ind(r;) = 7 (2(n — 1))

=1

If gg is the genus of E, then

2(n? — 1+ gg) = ind(oy) + ind(09) + Zind(n)

=1

= 2P — m)(1 = 2) + P (2 — 1)),

p
SO
np—n—
gE:(np_l—l)ip p>0,
p
and clearly gr — oo for p — oo. O

Example 5.2.10. Let h(X) € k[X] be a Davenport polynomial of degree n
(see Section 4.5 for definitions and properties), so there is g(Z) € k[Z] such
that A and g are Kronecker conjugate over k. Let L be a common splitting
field of h(X) — ¢ and ¢g(Z) — ¢, and z, z be roots of h(X) — ¢ and g(Z) — t,
respectively. Set A := Gal(L/k(t)), and let A, and A, be the stabilizers of
x and z. Using the inertia group of L of a place above ¢ — oo of k(t) one
easily proves (or see [24, 19.29]) that A and g have the same degree. Thus
A, cannot be conjugate to a subgroup of A,. On the other hand, as each
element in A, has a fixed point in the action on A/A,, we get that A, has
more than one orbit on A/A,. Therefore h(X) — g(Z) is reducible over k(Z)
without a linear factor. Thus, for f(X,t) := h(X)—t, we obtain |R\ £L| = cc.
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Example 5.2.11. Here we describe the exceptions to the finiteness results
of Theorem 5.1.1 for degree 5, see case (d). Suppose that we have |R \ L] =
oo for an irreducible degree 5 polynomial f(X,t) € k(¢)[X]. The proof of
5.1.1(d) shows that there is a Siegel function of the second kind ¢(7) € k(Z)
of degree 10, such that the Galois group A of g(Z) — t over k(t) is As or S
in the action on the 2—sets of {1,2, 3, 4,5}, the splitting fields of g(Z) —t and
f(X,t) over k(t) coincide, and that f(X, t) has Galois group A for the natural
action. Let x be a root of f(X,¢). An easy index computation shows that
k(t,z) has genus 0, see also [57, Section 8]. Let ¢ be an inertia generator
coming from the place t — oo of k(¢). Then, as g is a Siegel function of
the second kind, o has order 5. In particular, the place t — oo is totally
ramified in k(¢,z). Thus, without loss, f(X,t) = h(X) — ¢ for a polynomial
h(X) € k[X].

Conversely, let h(X) € k[X] be a polynomial of degree 5 such that A :=
Gal(h(X) —t/k(t)) = As or S5. Let U be the setwise stabilizer in A of two
distinct roots z; and xs of h(X) —t. A necessary condition that f(X,t) =
h(X) — t arises from a consideration as above is that k(z1,zs) is a genus
0 field. We get many positive examples even for ¥ = Q. From now on
suppose that £ = Q. Note that if Q(z1,z2) is a rational field, then we get
automatically Q(x1,72) = Q(z) and g(z) = t where g(Z) = j(Z)/(Z? — 5)°
with j(Z) € Q[Z] by Lemma 4.2.1(e).

An (essentially unique) example with Galois group & As over Q(t) is
F(X,t) == X3(X?+5X +40) —t. Set g(Z) := 40000(Z — 5)(2Z2% + 57 +
5)3/(Z* — 5)°. One verifies easily that f(X,g(Z)) is reducible over Q(Z)
with absolutely irreducible factors of degrees 2 and 3, and that we are in the
situation to apply Lemma 5.2.5(c).

In [12], Débes and Fried give a detailed analysis of this degree 5 case,
especially if the splitting field of h(X) — ¢ over Q(¢) has 4 ramified places.
(There cannot be more than 4.) One can enhance their arguments easily by
explicit computations to get more complete results. In this 4-point ramified
case, we may either assume that h(X) = X(X? — p)2 with 0 # p € Q, or
h(X) = (X —1)(X?% — p)?, where 0,41 # p € Q. Then one computes that
the field Q(x1,x2) from above is a rational field if and only if —p is a norm
of Q(v/5) in the first case, or if 5p— 1 is a norm of Q(+/5) in the second case.
It is not hard to compute explicitly the Siegel function g(Z) in these cases.
Debes and Fried rather give a theoretical argument that there are infinitely
many p € Q such that Q(z1, z5) is rational. (They use a different set up, so
they actually do not have this normal form of f(X,t) = h(X) —t.)
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5.3 Thue—Polynomials, on a Result of Lang-
mann

Continuing work in [45], K. Langmann obtains in [46] the following finiteness
result for exceptional specializations of Thue polynomials.

Theorem 5.3.1 (Langmann 1999). Let H(X,t) € Q[X,t] be a homoge-
neous polynomial of odd degree n, and suppose that H has no repeated linear
factors over Q and is not divisible by t. Then H(X,ty) — 1 is irreducible for
all but finitely many ty € 7.

Below we will prove a much more general result, which does not depend
on our group theoretic classification results. In particular, we show that
the separability assumption on H can be weakened, it is enough to assure
that the greatest common divisor of the multiplicities of the linear factors
of H(X,t) (over Q) is 1. (Spending somewhat more work one can slightly
lessen this condition, and assume that H(X,t) is not of the form J(X,t)¢
with e > 1 and J(X,t) € Q[X, ], a condition which is clearly also necessary
for the above theorem to hold.)

Furthermore, the above theorem holds without any change for number
fields.

Langmann’s theorem is wrong if we allow deg(H) = 2, because for d > 1
a square—free integer, the Pell equation X2 — dt? = 1 has infinitely many
integral solutions. However, extending the arguments given in the proof
of Theorem 5.3.3 below (to be worked out in a future paper) shows that
Langmann’s theorem holds also for each even degree > 2. Even for the
number field analogue it is enough to assume deg(H) # 2.

We claimed that we can lessen the separability assumption on H, and
that we can also extend the result to number fields. The following example
shows that we cannot do both at the same time, even if we assume odd
degree.

Example 5.3.2. Set H(X,t) := X?(X —t), and assume that k is a number
field with an infinite group of units. From

1-273

H(X
(X,

1 2 2
)_1:(X_E)(X +7Z°X+2)

and the fact that tp = (1 — 23)/z is an integer in Oy for each unit z, we
obtain reducibility of H(X,ty) — 1 for infinitely many ¢, € O.
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In order to prove the promised generalizations of Theorem 5.3.1, we
remark the following: Let H(X,t) be homogeneous of degree n. Then
H(X,t) = t"h(X/t) with h(X) € k[X]. Upon replacing X/t with X, we
ask for the irreducibility of tjh(X) — 1 for integral specializations ¢ty € O. If
we get reducibility infinitely often, then this is even more true for the poly-
nomial th(X) — 1. Thus we obtain the claimed extensions from the following
far more general

Theorem 5.3.3. Let k be a number field, and P;(X) € k[X] be a polynomial
of odd degree n. Let Py(X) € k[X] be a non—zero polynomial of degree < n,
which is relatively prime to Pi. If k = Q then assume that the greatest
common divisor of the multiplicities of the roots (in k) of Py(X) is 1. If
k # Q, then assume more strongly that P(X) is separable.

Then toP1(X) — Py(X) is irreducible for all but finitely many ty € Oy.

Proof. Assume the contrary. Then, by Proposition 1.1.2 and Lemma 1.2.1,
there is a rational function ¢g(Z) € k(Z) such that g(Z)P(X) — P»(X) is
reducible over k(Z), and that the splitting field of g(Z) — t over k(t) is
contained in the splitting field L of tP;(X) — P2(X) over k(t).

Furthermore, |g(k) N Ok| = oo, so |g7'(00)| < 2, see Proposition 4.1.1.
We use the notation from Lemma 1.2.1. Let P be a place of L which lies
above the place ¢t — oo of k(t). Let o be a generator of the inertia group
of B. Then o has at most two cycles on A/A,, with lengths which are the
multiplicities of the elements in the fiber g71(00).

We first treat the case & = Q. Then either [A : A,] = m, and o is
an m—cycle on A/A,, or [A : A,] = 2m, and o is a product of two m—
cycles on A/A,, see Chapter 4. Let ai,ao,...,a; be the multiplicities of
the roots of P;(X). Then o has on A/A, the cycle lengths a1, as,...,q;
(recall that deg(P;) > deg(P,)). Write [A : A,] = Am with A = 1 or 2,
and let u < Am/2 be the smallest degree in Z of an irreducible factor of
9(Z)P(X) — Py(X). As 0%, 1 < i < j, fixes a root of z, and o% has
orbits of lengths m/ged(m,a;) on A/A,, we obtain that u is divisible by
m/ ged(m, a;). Thus m/ ged(m,u) divides ged(m, a;) for each a;. But the q;
have the greatest common divisor 1 by assumption, hence m = ged(m, u),
so A =2 and u = m. So g(Z)P,(X) — Py(X) factors into two irreducible
factors which have the same degree with respect to Z. It follows that the
two factors also have the same degree with respect to X (because the degrees
are proportional to the sizes of the double cosets A,aA,, a € A). But this
contradicts the assumption that g(Z)P;(X) — Po(X) has odd degree in X.
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Now assume k # Q. As P, is separable, we obtain that o acts trivially on
A/A,. By faithful action of A on A/A,, we have 0 = 1. On the other hand,
the cycle lengths of 0 on A/A, are the multiplicities of the elements in the
fiber g71(00), which consists of at most two elements. As g is clearly not frac-
tional linear, we obtain that g has degree 2. Thus the group Gal(k(z)/k(t))
interchanges the two k(z)—irreducible factors of tP; (X) — P»(X), so we again
obtain a contradiction to the assumption that P;(X) has odd degree. O
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